

Colophon
© 2020 Raspberry Pi (Trading) Ltd.

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).

build-date: 2021-10-15

build-version: githash: 61115e7-dirty

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE

LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPTL’s Standard Terms. RPTL’s provision of the RESOURCES does not

expand or otherwise modify RPTL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

Build HAT Serial Protocol

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Introduction
The BuildHAT is a board that provides an interface between a Raspberry Pi host and up to four LEGO LPF2 (LEGO Power

Functions version 2) devices. Supported LPF2 devices include a wide range of actuators and sensors. Firmware running

on the HAT deals with the hard real-time requirements of the LPF2 devices, including monitoring for connection and

disconnection events and interrogating devices to determine their capabilities and properties.

The HAT communicates with the Raspberry Pi host over the 'command port', a 115200 baud serial interface with eight

bits per character, no parity and one stop bit ('8N1'). There is no flow control. The command port protocol is entirely in

plain text, and it is perfectly possible to simply run a terminal emulator on the host and interact manually with the HAT.

When experimenting the HAT in this way it is convenient to enable echo mode so that you can see what you are typing:

see the description of the echo command below. See also the plimit command, which must be sent before many

operations will work correctly.

This document describes the commands available over that interface.

 NOTE

A Python library is provided that provides a higher-level interface to the functions of the HAT: in most cases it will be

preferable to use that library rather than the lower-level commands described here.

Build HAT Serial Protocol

Introduction 2

Port and Device Basics
The firmware numbers the ports from 0 to 3. There is the notion of the 'current port', set using the port command. Many

commands implicitly address the current port.

Each port may have a device connected to it. A device may be 'active', which means that it communicates with the HAT

using a serial interface, or it may be 'passive'. Passive devices include some lights and motors, although most types of

motor are active devices. Active devices can offer some feedback to the HAT: for example, an active motor might contain

position or speed sensors to allow it to be controlled precisely.

An active device has up to sixteen 'modes'. A mode can be thought of as a small memory buffer in the device, much like

the concept of a 'characteristic' in Bluetooth terminology. Some modes are intended to be written to, to control the device;

some are intended to be read from, to extract sensor readings for example.

When a device is plugged in to the HAT, the HAT emits a 'connected' message followed by the information it has about

the device. For a passive device this will just be an identifying code number. For an active device this will be an identifying

code number followed by other information including the connection baud rate, software and hardware version numbers

and a list of the available modes. See the list command below for more detail.

When a device is unplugged from the HAT, a 'disconnected' message is emitted.

Build HAT Serial Protocol

Port and Device Basics 3

Device Power
The LPF2 connector supplies power to a connected device in two ways. The first of these is a normal digital logic power

supply at +3.3V which is always present. If a device attempts to draw too much current from this supply then a 'Port

power fault' message is emitted for as long as the fault persists.

The second power source is at about +7.2V and intended for driving motors and other relatively high-power devices. This

is supplied by a separate dedicated driver IC for each port. If a fault is detected on this supply then a 'Motor power fault'

message is emitted repeatedly. This fault condition is latched in hardware and must be cleared explicitly after the cause

of the fault has been resolved: see the clear_faults command below.

The motor driver ICs can output PWM waveforms of either polarity to allow speed and direction control of motors.

Build HAT Serial Protocol

Device Power 4

On-board Controllers
The firmware implements an independent controller for the motor power output on each port of the HAT. The controller

can be in one of two modes: 'direct PWM' (the default) and 'PID'. In addition, each controller has an associated setpoint,

which can be constant or varying: see the set command below.

In direct PWM mode the setpoint, which must be in the range from –1 to +1, directly controls the power output. This is

useful in simple motor applications, for driving lights, and for certain devices that use 'motor power' for other purposes.

Such devices usually need to have power enabled very shortly after connection is established, and usually need to be

powered in reverse: i.e., set –1.

In PID mode a proportional-integral-differential controller reads a value from a sensor: typically this will be a speed or

angle sensor on a motor being controlled. This value is called the 'process variable'. The PID controller adjusts the output

power to attempt to have the process variable track the setpoint closely. Using this you can, for example, attempt to run a

motor at constant speed under varying load, or move a motor to a given position. See the pid command below for more

details.

Build HAT Serial Protocol

On-board Controllers 5

Command Summary
Any command can be abbreviated to its shortest unique prefix. Multiple commands can be given on one line separated by

semicolons.

help, ?

Prints a synopsis of the available commands.

echo <0|1>

Disables (default) or enables echo of characters received over the command port.

version

Prints the version string for the currently-running firmware.

port <port>

Sets the current port, used implicitly by many other commands.

vin

Prints the voltage present on the input power jack.

ledmode <ledmode>

Sets the behaviour of the HAT’s LEDs.

ledmode Effect

–1 LEDs lit depend on the voltage on the input power jack (default)

0 LEDs off

1 orange

2 green

3 orange and green together

list

Prints a list of all the information known about the LPF2 devices connected to the HAT. Typical output is as follows.

 P0: connected to active ID 40
 type 40

Build HAT Serial Protocol

help, ? 6

 nmodes =3
 nview =3
 baud =115200
 hwver =00000004
 swver =11000000
 M0 LEV O SI = PCT
 format count=1 type=0 chars=1 dp=0
 RAW: 00000000 00000009 PCT: 00000000 00000064 SI: 00000000 00000009
 M1 COL O SI = PCT
 format count=1 type=0 chars=2 dp=0
 RAW: 00000000 0000000A PCT: 00000000 00000064 SI: 00000000 0000000A
 M2 PIX O SI =
 format count=9 type=0 chars=3 dp=0
 RAW: 00000000 000000AA PCT: 00000000 00000064 SI: 00000000 000000AA
 M3 TRANS SI =
 format count=1 type=0 chars=1 dp=0
 RAW: 00000000 00000002 PCT: 00000000 00000064 SI: 00000000 00000002
 speed PID: 00000000 00000000 00000000 00000000
 position PID: 00000000 00000000 00000000 00000000
 P1: no device detected
 P2: connected to passive ID 8
 P3: connected to active ID 30
 type 30
 nmodes =5
 nview =3
 baud =115200
 hwver =00000004
 swver =10000000
 M0 POWER SI = PCT
 format count=1 type=0 chars=4 dp=0
 RAW: 00000000 00000064 PCT: 00000000 00000064 SI: 00000000 00000064
 M1 SPEED SI = PCT
 format count=1 type=0 chars=4 dp=0
 RAW: 00000000 00000064 PCT: 00000000 00000064 SI: 00000000 00000064
 M2 POS SI = DEG
 format count=1 type=2 chars=11 dp=0
 RAW: 00000000 00000168 PCT: 00000000 00000064 SI: 00000000 00000168
 M3 APOS SI = DEG
 format count=1 type=1 chars=3 dp=0
 RAW: 00000000 000000B3 PCT: 00000000 000000C8 SI: 00000000 000000B3
 M4 CALIB SI = CAL
 format count=2 type=1 chars=5 dp=0
 RAW: 00000000 00000E10 PCT: 00000000 00000064 SI: 00000000 00000E10
 M5 STATS SI = MIN
 format count=14 type=1 chars=5 dp=0
 RAW: 00000000 0000FFFF PCT: 00000000 00000064 SI: 00000000 0000FFFF
 C0: M1+M2+M3
 speed PID: 00000BB8 00000064 00002328 00000438
 position PID: 00002EE0 000003E8 00013880 00000000

For each port the HAT ports the type and ID of any device connected. For active devices it also gives the number of

'modes' and 'views', the baud rate of the HAT’s connection to the device, and the device’s hardware and software version

numbers. Next comes a list of the available modes, any possible combi modes, and any recommended PID parameters.

The first line for each mode gives its name (such as LEV) and unit, such as PCT or DEG. The second line gives the number of

Build HAT Serial Protocol

list 7

data items in the mode (usually 1) , its type (0=signed char, 1=signed short, 2=signed int, 3=float), a hint as to a suitable

number of characters to use to display its value, and a suitable number of decimal places. The third line gives minimum

and maximum values for the data in that mode in various units.

clear_faults

Clears any latched motor power fault.

coast

Switches the motor driver on the current port to 'coast' mode, that is, with both outputs floating.

pwm

Switches the controller on the current port to direct PWM mode.

off

Same as pwm; set 0.

on

Same as pwm; set 1.

pid <pidparams>

Switches the controller on the current port to PID mode. The pidparams specify from where the process variable is to be

fetched and the gain coefficients for the controller itself. They are, in order, as follows.

Name Meaning

pvport port to fetch process variable from

pvmode mode to fetch process variable from

pvoffset process variable byte offset into mode

pvformat process variable format: u1=unsigned byte, s1=signed byte, u2=unsigned

short, s2=signed short, u4=unsigned int, s4=signed int, f4=float

pvscale process variable multiplicative scale factor

pvunwrap 0=no unwrapping; otherwise modulo for process variable phase unwrap

Kp proportional gain

Ki integral gain

Kd differential gain

windup integral windup limit

The PID controller fetches the process variable from the mode specified by the pvport, pvmode, pvoffset, pvformat
parameters. Note that a suitable select command is required to ensure that this mode’s data are available.

Build HAT Serial Protocol

clear_faults 8

It then multiplies the value from the mode by pvscale.

The pvunwrap parameter allows 'phase unwrapping' of the process variable. The commonest use of this is with an angular

sensor that outputs a value from –180° to +179° depending on its absolute position. When the sensor is turned

continuously, the reading will jump from +179° to –180° once per revolution. Setting the pvunwrap parameter to 360 will

cause the unwrapper to add or subtract 360° at each discontinuity to make its output continuous (and in principle infinite

in range). More precisely, the output of the unwrapper is guaranteed equal to its input modulo the pvunwrap parameter,

with the smallest possible change between one sample and the next.

Kp, Ki and Kd are the standard PID controller parameters. The implied unit of time in the integrator and differentiator is one

second.

The output of the error integrator is clamped in absolute value to the windup parameter.

set <setpoint>

Configures the setpoint for the controller on the current port. The setpoint can be a (floating-point) constant or a

waveform specification.

A waveform specification is one of square, sine, triangle, pulse and ramp, followed by four floating-point parameters.

For square, sine and triangle waveforms these parameters are the minimum value, the maximum value, the period in

seconds, and the initial phase (from 0 to 1). For a pulse waveform the first three parameters are the setpoint value during

the pulse, the setpoint value after the pulse, and the duration of the pulse; the fourth parameter is ignored. For a ramp

waveform the first three parameters are the setpoint value at the start of the ramp, the setpoint value at the end of the

ramp, and the duration of the ramp; the fourth parameter is again ignored.

When a pulse or ramp is completed, a message pulse done or ramp done is emitted.

bias <bias>

Sets a bias value for the current port which is added to positive motor drive values and subtracted from negative motor

drive values. This can be used to compensate for the fact that most DC motors require a certain amount of drive before

they will turn at all.

plimit <limit>

Sets a global limit to the motor drive power on all ports. For safety when experimenting the default value is 0.1; this will

usually need to be increased.

select

Deselects any previously-selected mode on the current port.

select <selmode>

Selects the specified mode on the current port and repeatedly outputs that mode’s data as raw hexadecimal.

select <selmode> <offset> <format>

Selects the specified mode on the current port. Repeatedly extracts a value from that mode starting at the specified

offset, interpreting it according to the specified format (u1=unsigned byte, s1=signed byte, u2=unsigned short, s2=signed

Build HAT Serial Protocol

set <setpoint> 9

short, u4=unsigned int, s4=signed int, f4=float) and outputs that value.

selonce

As select but outputs data once rather than repeatedly.

combi <index>

Deconfigures any previously-configured combi mode on the current port at the specified index.

combi <index> <clist>

Configures a combi mode on the current port at the specified index. clist is a list of pairs of numbers, each pair giving a

mode and an offset into that mode. Note that the offset is a 'dataset' offset, i.e., is multiplied by the size of the data

elements in that mode (as given by the list command) to obtain a byte offset.

write1 <hexbyte>*

Writes the given hexadecimal bytes to the current port, the first byte being a header byte. The message is padded if

necessary, and length and checksum fields are automatically populated.

write2 <hexbyte>*

Writes the given hexadecimal bytes to the current port, the first two bytes being header bytes. The message is padded if

necessary, and length and checksum fields are automatically populated.

debug <debugcode>

Not required for normal use. Note that some debug modes can generate output faster than the serial port can handle at

its standard speed.

signature

Not required for normal use.

Build HAT Serial Protocol

selonce 10

Appendix A: Examples
The following are some simple examples to illustrate how to use the above commands.

Using a motor from the SPIKE Prime set

Plug the motor into port 0. Then send

port 0

to address port 0,

plimit 1

to remove the power limit, and

set triangle 0 1 10 0

to generate a triangle wave setpoint. The motor will accelerate to full speed and decelerate back to zero continuously with

a period of ten seconds.

Now try

port 0
combi 0 1 0 2 0 3 0

to select a combi mode with index zero containing data from modes 1, 2 and 3,

select 0

to select this combi mode, and

plimit 1 ; bias .4

to remove the power limit and set a reasonable bias value for the motor. You can now set up a position PID controller that

reads a 2-byte value from offset 5 in this combi mode, which is the absolute position of the motor in degrees, from –180°

to +179°. We scale this by 1/360=0.0027777778 to get a position in revolutions from –0.5 to +0.5, unwrap the phase with

a modulo of 1:

pid 0 0 5 s2 0.0027777778 1 5 0 .1 3

Build HAT Serial Protocol

Using a motor from the SPIKE Prime set 11

Here the PID parameters are Kp=5, Ki=0 and Kd=0.1. The integral windup limit is set arbitrarily at 3.

Now if you send

set square 0 1 3 0

the motor will alternately rotate one revolution clockwise and one revolution anticlockwise with a period of three seconds.

Using the colour sensor from the SPIKE Prime set

port 0 ; plimit 1 ; set -1 ; select 0

will turn on the sensor’s light and continuously report a number corresponding to the colour detected. The sensor has

many other modes.

Using the ultrasonic distance sensor from the SPIKE Prime set

port 0 ; plimit 1 ; set -1 ; select 1

will power up the sensor and continuously report a number corresponding to the distance to the object in front of the

sensor in millimetres.

To control the four LEDs on the sensor use the following sequence

select 5 ; write1 c5 pp qq rr ss

where pp, qq, rr and ss are four hexadecimal numbers from 0 to 0x64 (100 decimal) that control the brightnesses of the

individual LEDs.

Using the force sensor from the SPIKE Prime set

port 0 ; select 0

will continuously report a number corresponding to the force detected.

Using the 3x3 colour light matrix from the SPIKE Essential set

port 0 ; plimit 1 ; set -1

will turn on the light matrix. If the device does not receive power shortly after connection is established it will disconnect.

Build HAT Serial Protocol

Using the colour sensor from the SPIKE Prime set 12

select 0 ; write1 c0 p

where p is a number from 0 to 9, will light the matrix in bar-graph style according to the value of p.

select 1 ; write1 c1 p

where p is a hexadecimal number from 0 to 0x0a will light the matrix in a solid colour according to the value of p: 0=off;

1=red; 2=magenta; 3=blue; 4=cyan; 5=pale green; 6=green; 7=yellow; 8=orange; 9=red, 0a=white.

The most flexible mode is mode 2, where you can specify the colour of each LED individually.

select 2 ; write1 c2 12 23 34 45 12 23 34 45 12

gives a random pattern of dull colours and

write1 c2 67 72 78 82 89 92 9a a4 aa

gives some random bright ones. The first hex digit (from 0 to a) specifies the brightness and the second hex digit (from 0

to a) the basic colour. So for example

write1 c2 1a 2a 3a 4a 5a 6a 7a 8a 9a

gives shades of white and

write1 c2 a1 a2 a3 a4 a5 a6 a7 a8 a9

gives all the basic colours at full brightness.

Mode 3 allows you to specify transitions.

write1 c3 1

enables row-by-row animated transitions, while

write1 c3 2

enables a fade to black and fade back up.

Build HAT Serial Protocol

Using the 3x3 colour light matrix from the SPIKE Essential set 13

Appendix B: Passive ID Codes
ID (decimal) Device

1 System medium motor

2 System train motor

3 System turntable motor

4 general PWM/third party

5 button/touch sensor

6 Technic large motor (some have active ID)

7 Technic XL motor (some have active ID)

8 simple lights

9 Future lights 1

10 Future lights 2

11 System future actuator (train points)

Build HAT Serial Protocol

Appendix B: Passive ID Codes 14

Appendix C: Active ID Codes
ID (hex) Device

25 colour and distance sensor

26 Medium linear motor

2E Technic large motor

2F Technic XL motor

30 SPIKE Prime medium motor

31 SPIKE Prime large motor

3D SPIKE Prime colour sensor

3E SPIKE Prime ultrasonic distance sensor

3F SPIKE Prime force sensor

40 SPIKE Essential 3x3 colour light matrix

41 SPIKE Essential small angular motor

Build HAT Serial Protocol

Appendix C: Active ID Codes 15

	Build HAT Serial Protocol
	Colophon
	Legal Disclaimer Notice

	Introduction
	Port and Device Basics
	Device Power
	On-board Controllers
	Command Summary
	help, ?
	echo <0|1>
	version
	port <port>
	vin
	ledmode <ledmode>
	list
	clear_faults
	coast
	pwm
	off
	on
	pid <pidparams>
	set <setpoint>
	bias <bias>
	plimit <limit>
	select
	select <selmode>
	select <selmode> <offset> <format>
	selonce
	combi <index>
	combi <index> <clist>
	write1 <hexbyte>*
	write2 <hexbyte>*
	debug <debugcode>
	signature

	Appendix A: Examples
	Using a motor from the SPIKE Prime set
	Using the colour sensor from the SPIKE Prime set
	Using the ultrasonic distance sensor from the SPIKE Prime set
	Using the force sensor from the SPIKE Prime set
	Using the 3x3 colour light matrix from the SPIKE Essential set

	Appendix B: Passive ID Codes
	Appendix C: Active ID Codes

