Smart Machine Smart Decision

Com

A company of SIM Tech

SIMB800 Series Embedded
AT _Application Note V1.02

r 3\

Software Design
\. W

SIM800 Series Embedded AT Application Note_V1.02 1 2014-05-30

g

@“‘ Smart Machine Smart Decision

General Notes
SIMCom offers this information as a service to its customers, to support application and

engineering efforts that use the products designed by SIMCom. The information provided is based
upon requirements specifically provided to SIMCom by the customers. SIMCom has not
undertaken any independent search for additional relevant information, including any information
that may be in the customer’s possession. Furthermore, system validation of this product designed
by SIMCom within a larger electronic system remains the responsibility of the customer or the

customer’s system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom
Limited., copying of this document and giving it to others and the using or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the payment of
damages. All rights reserved in the event of grant of a patent or the registration of a utility model

or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2014

SIM800 Series Embedded AT Application Note_V1.02 2 2014-05-30

Smart Machine Smart Decision

Contents

(O] 1 =] o | £ TSSOSO PP U ST P VR PPTUPTUTPRO 3
T T[] o 1] (0] Y/ PSSR 5
1. Embedded AT INtrOQUCTIONoouiiiiiiiiice e 6
1.1 OVETVIEW ...eeieeeieeiie et et et et e bt eeteeateeeteesteesbeesseenseeaseesseenseanseenseenseasseanseanseenseansennsennsens 6

1.2 L0707 TN 4 (TP 6

1.3 Sources Supplied by Embedded ATc.cooieiiiiiiiiiiece e 6

2 Embedded AT BasiC CONCEPLIONcvveiiiiiieie ettt nne s 7
3 IMUIEE TREEAOS ...ttt 8
3.1 Multi Threads Function DeSCIiPtionc.cecveeevieriieriieniieniesieeieesieeeese e see e eseeeneas 8

3.2 Tread INrOAUCTION.cccuieiieie ettt e e sebeesbeenseennes 8

33 IMLESSAZE ... euveeeeteeeutte et ettt ettt e et e et e ettt e s at e e e ab e e e bt e e bt e e ehe e e eabeeea bt e e bt e e ebbeeeabeeenbeeebeeeaee 10
3.3.1 Message DEfiNItioNcceeevevieiieeieeieeeeeie ettt seeeseee 10

332 Interface DefiNItioncceccviriiiieiieeie ettt see 10

333 N O ettt ettt ettt ettt e e ht e s ab e e et e e bt e e bt e e eaaeeeateas 12

4 B LT A o] o] [T U L] o OSSN 13
4.1 OVETVIEW ..ttt sttt sttt st ettt e bt et e bt e bt et e e bt et e e bt e bt enbeenbeenbeenbeenbeenseenbeenee 13

4.2 Function Interface and EXamplecccovieiiiniiniiiieiieneceeeeeee e 13

4.3 TIPS e tte ettt ettt ettt ettt ettt et ettt ettt ettt et e et e e bt e be et e bt enteeateenteenteenteenee 14

5 V=T aaTo] VAN o] o] [Tor= L o] o SRR 15
6 5] L o PSS 16
7 Serial POt iNTEITaCEceieie e 17
7.1 FUNCtion DESCIIPLIONeevieiieiieie et ettt ete ettt et eete et sveseteseaesaaeseaessaesnnesnneens 17

7.2 IMLESSAEE ... eueeeeeteeeitte ettt ettt et e et e et e e bt e bt e e e at e e s ab e e sabe e e bt e e bt e e ebt e e e abe e e bt e sabeeebeeeaees 17

7.3 Function Interface and EXamplec.cccoeoiiriiiiiiiiiieiicieciece et 17

7.4 Serial Port Data FIOWcocviiiiiiiiieiieiieieeieetet ettt 21

7.5 IN OB ..ottt ettt ettt ettt ettt ettt e h e s et e et e e bt e e bt e e bt e e eh bt e eabeeea bt e e bt e e bt e e ehbeeeabeesabeeeabeeeaeas 22

8 F1aSh ATTOCATION ...ttt 24
8.1 FUnCtion DESCIIPHIONcuviiiiieiiieeiieeiie ettt ereesteesteeeteeestaeessseeseseessseessseeenenas 24

8.2 Function Interface and EXampleccccoooviiriiiiiieiiii et 24

8.3 SPACE ALLOCALION ...evvvieerieeiie ettt eeiee ettt e re e bt e s beeesteeestaeessseessseessseeenseeansseens 24

8.4 APP UPGIAAE ...t 25

8.5 IO -ttt ettt st s h e bt bbbt e bt e bt e b e sheesheesbeesbeesaee s 27

9 LB SYSTEM ...ttt bbbt bbbt sttt b e b et b e e 28
9.1 N O ettt ettt et e h e et a e et e e bt e e bt e e bt e e sate e sabeeeabeeebteebeeeaee 28

10 Peripheral INTerfaCe ..ot nre e 30

SIM800 Series Embedded AT Application Note_V1.02 3 2014-05-30

W Smart Machine Smart Decision
10.1 Function INtrodUCHONc.eeiiiiiiiieiie ettt 30
10.2 Relative Function Interface and EXamplec.ccccovveviiiiiieniiieecie e 30

10.2.1 GPIO Read/write and control Interface...........coceeverciiiiiiniinniiiiiieeeeeee 30
10.2.2 Module Interrupt configuration Interface.........ccccoeveeveeniiniinenienienieeeen, 33
10.2.3 SPLINEETTACE ...c..eeeeieeiieeiie ettt 35
10.2.4 PWM Output Control INterface..........ccccvererieeriieniieniieeiie e evee e 36
10.2.5 ADC INEEITACE ...ttt 36
10.2.6 PowerKey , LED Control Interface..........cocceevveeviieriieniieniieiieieeeeeeceieeen 37
10.2.7 KEYPAD ..ottt e 38

X 0 To [o OSSPSR PSURPRUPSPRPRN 40
11.1 Function INtrodUCHONc.cociiiiieieeie ettt es 40
11.2 Function Interface and EXamplecccoociiiiiiiiiiiiinieiecececeee e 40
| 5 T [PSSR 41

12 SOCKEL ..ot bbbttt b e r s 42
12.1 Function INtrodUCHONc.cueiiiiiiiiiiie ettt st 42
12.2 Function Interface and EXampleccccoeviieiiiiieiiiiiiciecee e 42
I2.3 INOTC ettt ettt sttt et et st st sat e st e s ht e she e s ht e s bt e bt e sbeesaeesbeenaes 47

I T |V 1 TSRS STRPRURN 48
13.1 Function INtrodUCHONc.cocuiiiieiecie ettt e s es 48
13.2 Function Interface and EXamplecccoeoiiiiiiiiieiiiiiiccce e 48
L0 0 T [/ PSSR 53

SIM800 Series Embedded AT Application Note_V1.02 4 2014-05-30

Q:z::
so:
Com

e Smart Machine Smart Decision

Version History

Application Scope

This document is applicable to SIM800 series Embedded AT module, include SIM800W,
SIM840W, SIM800V, SIM800H, SIM800, SIM800M64 and SIMS08.

This document describes the development guide of Embedded AT and relative notes.

SIMB800 Series Embedded AT Application Note_V1.02 5 2014-05-30

2 Qeooe
O seee

Smart Machine Smart Decision

A company of SiM

1. Embedded AT Introduction

1.1 Overview

Embedded AT is mainly used for customer to do the secondary development on SIM800 series
modules. SIMCom provides the relative API functions, resource and operating environment.
Customer’s APP code runs inside SIM800 series modules, so external host will be saved.

1.2 Code Style

Embedded AT can basically implement customer’s code, and supports multiple threads that allows
customer to run different subtask.

1.3 Sources Supplied by Embedded AT

The main API functions are listed as following:

SIMB800 Series Embedded AT Application Note_V1.02 6 2014-05-30

e Smart Machine Smart Decision

2 Embedded AT Basic Conception

The software architecture of Embedded AT is as following:

. Init ! ! Running 1
— T
I 11 APP I
L L 1
]
I 1 1 I
| | . O
I D HHE E :
|_‘ E. 5 = |
I l I g Ix IE I:D
I r T HE N B :
| | | APl I
| AP | | |
I " I exk_gek_s.2tm Periphery Timer "
I 11 I
I | 1 I
| | | & 1
| I | I
| | | a
: : : Core |
1
I Il e e e e e, e, e ———————— - - - -
Figure 1 General Software Architecture
Ilustration:

Embedded AT consists of two parts, one is the main program namely core system , another is
customers’ program namely Embedded application. Core system provides the module’s main
features and API for customer program. The main features include standard AT commands, file

system manipulation, timer control, peripheral API and some common system API.
Note:

EAT (named in following chapters) is the abbreviation of Embedded AT

SIM800 Series Embedded AT Application Note_V1.02 7 2014-05-30

Smart Machine Smart Decision

3 Multi Threads

3.1 Multi Threads Function Description

The platform provides multi threads function, supports one main thread and 8 sub threads for now ,
mainly used to communicate with system such as receive system event .

The suspended thread which has a high priority will be called prior than the running thread which
has a low priority once the condition is triggered.

3.2 Tread Introduction

Core init process

L i app_user?2 is app_user8 is
app_main is exist? app_userl 1s exist?&¬ in exist?&¬ in update

exist?&¬ in
state
update state update state

Sleep Yes Yes

3000ms
Sleep
SIeep -
3100ms 3100ms
EAT module init

8

Figure 2 Tread Initialization Information

Illustration:
1) The Corresponding structure in main.c

SIMB800 Series Embedded AT Application Note_V1.02 8 2014-05-30

S
aCom

Acompany

Smart Machine Smart Decision

/* Add APP_CFG in SIM800H and SIMB800 platform EAT app begin*/
#pragma arm section rodata = "APP_CFG"

APP_ENTRY_FLAG

#pragma arm section rodata

/* Add APP_CFG in SIM800H and SIMB800 platform EAT app end*/

#pragma arm section rodata="APPENTRY"'
const EatEntry st AppEntry =
{
app_main,
app_func extl,
(app_user_func)EAT NULL,//app_userl,
(app_user_func)EAT NULL,//app_user2,
(app_user_func)EAT NULL,//app_user3,
(app_user_func)EAT NULL,//app_user4,
(app_user_func)EAT NULL,//app_user5,
(app_user_func)EAT NULL,//app_user6,
(app_user_func)EAT NULL,//app_user7,
(app_user_func)EAT NULL,//app_users,
¥

#pragma arm section rodata

2) Task Description

There have 9 threads for user app, they are EAT USER_0 to EAT _USER 8.
If the member in struct EatEntry st is configured, also system is not in upgrade process, then this
entrance will be called, and task related message will be allocated.

Following example shows app_main, app_func_extl, app_userl and app_user3 will be called.
const EatEntry st AppEntry =
{
app_main,
app_func_extl,
(app_user_func)app userl,//app_userl,
(app_user_func)app user2,//app_user2,
(app_user_func)app_user3,//app_user3,
(app_user_func) EAT NULL,//app_user4,
(app_user_func) EAT NULL,//app_user5,
(app_user_func) EAT NULL,//app_user6,
(app_user_func) EAT NULL,//app_user7,
(app_user_func) EAT NULL,//app_user8,

SIM800 Series Embedded AT Application Note_V1.02 9 2014-05-30

[I
900
90
900
&Com

Smart Machine Smart Decision

In SIM800 and SIM800H platforms, EAT USER 0 (EatEntry_st.entry) stack size is 10k bytes,
queue size is 80. From EAT USER 1 to EAT USER 4, stack size is 10K bytes, queue size is 50.
And stack size is 2k bytes, queue size is 20 in other threads.

In SIM80OW platform, EAT USER 0 thread supports stack size 50k bytes, queue size is 80.
Other threads supports stack space 4K Byte, queue size 20.

The priority degrades successively, i.e. app_main>app_userl>..>app_user8.

Note:
Do not to use large array in thread to avoid stack overflow.

3.3 Message

3.3.1 Message Definition

Function Interface Function

EAT EVENT TIMER Timer message

EAT EVENT KEY Key message

EAT EVENT INT External GPIO interruption triggered message

EAT EVENT MDM READY RD EAT receives data sent from Modem

EAT EVENT MDM READY WR Forward message once Modem’s receive buffer
turn into non-full status from full status

EAT EVENT MDM RI Reserve for now

EAT EVENT UART READY RD Serial port receive data

EAT EVENT UART READY_ WR Forward message once serial port’s receive buffer
turn into non-full status from full status

EAT EVENT ADC ADC message

EAT EVENT UART SEND COMPLETE Message indicates serial port’s underlying
hardware data sent successfully

EAT EVENT USER MSG Forward message once a thread receive other
threads’ message

3.3.2 Interface Definition

The following two functions, which can only be used in app_main, is to acquire message sent
from core, or acquire message the EAT EVENT USER MSG sent from app user task by

eat send msg to_user.

SIMB00 Series Embedded AT Application Note_V1.02 10
2014-05-30

e Smart Machine Smart Decision

Function Interface :

eat_get event Acquire the queue message

eat_get event num Acquire the queue message number

Example:

EatEvent_st event;
u32 num;
void app_main(void *data)
{
eat get event(&event);
num=eat_get event num();
if(event.event == EAT EVENT UART SEND COMPLETE)
{
}

For the 8 tasks which can be used by customer, i.e. app_userl, app_user2, etc, functions which
correspond to above features are as following:

Function Interface

eat get event for user Acquire the queue message
eat_get event num_for user Acquire the queue message number
Example:
void app_userl(void *data)
{
u32 num;
EatEvent st event;
while(1)
{
num= eat_get event num_for user(EAT USER 1);
eat get event for user(EAT USER 1, &event);
if(event.event == EAT EVENT USER_MSG)
{
¥
}
}
SIMB00 Series Embedded AT Application Note_V1.02 11

2014-05-30

Smart Machine Smart Decision

3.33
1)

2)

3)

Note

To send message, function eat send msg to user can be used in app main and

app_user.

SIM800H and SIMS800 system message can be sent to sub thread, and the principle is
that message will be send to the thread in which the API is called.

For example, if customer call eat uart open (EAT UART 1) to open uart 1 in userl ,
then the message EAT EVENT UART READY RD (event.uart.uart=EAT UART 1)
will be forwarded to userl once uartl receive date .

For example, if customer call eat time start (EAT TIMER 1) in app _main and call
eat timer start (EAT TIMER 2) in userl, message EAT EVENT TIMER
(event.timer.timer id = EAT TIMER 1) will be forwarded to app main once
EAT TIMERI1 is triggered, and message EAT EVENT TIMER (event.timer.timer id =
EAT TIMER 2) will be forwarded to userl once EAT _TIMER 2 is triggered.

For example, if we call eat modem_write (“AT\r\n”, 4) to send AT command to Core in
userl, then the AT command’s execution result will be forwarded to userl by message
EAT EVENT MDM_READY_ RD. Afterwards the URC report would also be forwarded
to userl until other thread call eat modem write. Such as send AT command in user2,

then the AT command execution result and URC report will be forwarded to user2.

The AT URC message (EAT EVENT MDM READY RD) in the start-up process is
forwarded to main thread as default, and can use eat modem set poweron urc dir() to

configure that forwarding power on URC to assigned thread .

eat_get event or eat get event for user is synchronous interface. Once customer call
this interface, response will return immediately if there is event in the thread , and if there

is not event , the thread will be suspended .

If customer doesn’t need to suspend the thread, then can use eat get event num() or
eat_get event num_for user(EAT _USER x) to acquire the event number in this thread’s
event queue. If the event number is 0, then don’t call eat get event for user interface.
Customer would call this interface if the number is above 0.

SIMB00 Series Embedded AT Application Note_V1.02 12
2014-05-30

it Smart Machine Smart Decision

4 Timer Application

4.1 Overview

EAT provides timer interfaces for following usage:

1) Timers for customer. There are two kinds of timers, 16 ms-grade timers and 1 ps-grade timer;
2) Interface to set thread sleep;
3) Interface to set and get system time & date;

4) Interface to get the time difference between two points.

4.2 Function Interface and Example

EVENT:
EAT EVENT TIMER
Struct :
typedef struct {
unsigned char sec; /* [0, 59] */
unsigned char min; /* [0,59] */
unsigned char hour; /* [0,23] */
unsigned char day; /* [1,31] */
unsigned char mon; /* [1,12] */
unsigned char wday; /* [1,7] */
unsigned char year; /* [0,127] */
} EatRtc_st;
Callback Function:
typedef void (*eat gpt callback func)(void);

Function Interface:

Function Name Description

eat_timer_ start/eat timer stop Start and stop ms-grade timer
eat gpt start /eat gpt stop Start and stop ps-grade timer
eat_sleep Thread sleep

eat get current time Acquire the current time

eat_get duration_us . L
- . Acquire the time interval
eat get duration _ms

eat_get rtc/ eat set rtc Set and acquire the system time
Example:
SIMB00 Series Embedded AT Application Note_V1.02 13

2014-05-30

it Smart Machine Smart Decision

Application for ms-grade timer

//Start the timer

eat timer start(EAT TIMER 1, 100);
//Get timer EVENT

eat _get event(&event);

if EAT EVENT TIMER == event.event)
{

//do something

Application for ps-grade timer

void gpt time handle(void)

{

//do something...

}
eat_gpt start(, EAT FALSE, gpt time handle);

Acquire the time interval

unsigned int time = eat get current time();
//do something

unsigned int time_ms = eat_get duration ms(time);

Set and acquire system time

EatRtc_st rtc;
eat_set rtc(&rtc);
rtc.year = 12;
eat_get rtc(&rtc);

4.3 Tips

1) eat gpt start is hardware timer , will be executed timer callback function in interrupt . So
timer callback function should not occupy too much time, should not use blocking

function , such as sleep , memory allocation , signal , etc .

2) Timer may affect sleep function. System in sleep mode would be woken up once the timer
is out.

SIMB00 Series Embedded AT Application Note_V1.02 14
2014-05-30

oo

oo

oo

oo
A compan

5 Memory Application

E; Qeooce

Smart Machine Smart Decision

EAT platform provides an interface by managing an array to realize memory initialization,
allocation and release. Memory space which needs to be applied and released dynamically could

be defined by array flexibly.

The maximum memory space size can be applied at a time is N (The value of N is 168 currently,

may be different based on different module.).

The memory and global variables both occupy app’s RAM space. For the size of RAM space,
please refer to chapter Flash allocation.

Function Interface:

Function Interface Function

eat mem_init Initialize memory block

eat mem alloc Apply memory

ecat mem_free Release memory
Example:

#define DYNAMIC MEM _SIZE 1024*400

static unsigned char app dynic mem testtDYNAMIC MEM SIZE]; /* space , used to
initialize memory

void* mem prt=EAT NULL,;

/ * initialize memory */

eat mem init(app_dynic mem test, sizeof(app_dynic_mem test));
/* apply memory */

mem prt =eat mem alloc(size);

/*release memory */

eat mem_free(mem_prt);

SIMB00 Series Embedded AT Application Note_V1.02 15
2014-05-30

it Smart Machine Smart Decision

6 Sleep

API eat_sleep_enable is to enable or disable the system sleep mode. And it is disabled as default.

Enable the system to into sleep mode

‘ eat_sleep enable(EAT TRUE);

Disable the system to enter into sleep mode

eat_sleep_enable(EAT FALSE);

During sleep mode, module will be woken up regularly and automatically by network paging.
There have only key event, GPIO interrupt, timer, incoming SMS and call could wake up module

in sleep mode. For detail, please refer to document “SIM800 Series Embedded AT Sleep
Application”.

SIMB00 Series Embedded AT Application Note_V1.02 16
2014-05-30

[I
900
90
900
aCom

Smart Machine Smart Decision

7 Serial Port interface

7.1 Function Description

Serial port API functions could do following works:
1) Configure Serial port parameter ;

2) Transfer data via UART;

3) Configure UART mode;

Reserve 3 ports for app, either of them could be specified as AT port or debug port. Different
module has different port, for example, there have 2 UART ports and 1 USB port in SIM8OOH

module.

7.2 Message

EAT_EVENT_MDM_READY_RD
During the process of modem sending data to EAT, the TX buffer status changing from empty
status to non-empty status will trigger a message to EAT. This TX buffer size is 5K bytes.

EAT_EVENT_MDM_READY_WR
During the process of Modem receiving data from EAT, RX buffer changing from full status to
non-full status will trigger a message to EAT. This RX buffer size is 5K bytes.

EAT_EVENT_UART_READY_RD
When UART receives data, RX buffer changing from empty status to non-empty status will trigger
this message to EAT. This RX buffer size is 2K bytes.

EAT_EVENT_UART_READY_WR
When UART sends data, TX buffer changing from full status to non-full status will trigger this
message to EAT. This TX buffer is 2K bytes.

EAT_EVENT_UART_SEND_COMPLETE
When UART sends data, TX buffer changing from non-empty status to empty status and the
empty status of DMA FIFO will trigger this message.

7.3 Function Interface and Example

Enumeration Varialble
typedef enum {

EAT UART 1,

EAT UART 2,

EAT UART 3,

SIM800 Series Embedded AT Application Note_V1.02 17
2014-05-30

&3

o3

Com : fai
prer vty Smart Machine Smart Decision

EAT UART NUM,
EAT UART NULL=99
+ EatUart_enum,;

typedef enum {

EAT_UART BAUD_1200 =1200,
EAT_UART BAUD_2400 =2400,
EAT_UART BAUD_4800 =4800,
EAT_UART BAUD_9600 =9600,
EAT_UART BAUD_19200 =19200,
EAT_UART BAUD_ 38400 =38400,
EAT_UART BAUD_57600 =57600,
EAT_UART BAUD_115200 =115200,
EAT_UART BAUD_230400 =230400,
EAT_UART BAUD_460800 =460800

} EatUartBaudrate;

typedef enum {
EAT UART DATA BITS 5=5,
EAT UART DATA BITS 6,
EAT UART DATA BITS 7,
EAT UART DATA BITS 8

} EatUartDataBits enum;

typedef enum {
EAT UART STOP BITS 1=1,
EAT UART STOP_ BITS 2,
EAT UART STOP BITS 1 5
}+ EatUartStopBits_enum;

typedef enum {
EAT UART PARITY NONE=0,
EAT UART PARITY_ODD,
EAT UART PARITY EVEN,
EAT UART PARITY SPACE

}+ EatUartParity enum,;

Struct
typedef struct {
EatUart_enum uart;
} EatUart_st;

typedef struct {
EatUartBaudrate baud;

SIMB00 Series Embedded AT Application Note_V1.02 18
2014-05-30

Acompany

Smart Machine Smart Decision

EatUartDataBits enum dataBits;
EatUartStopBits_enum stopBits;
EatUartParity enum parity;

}+ EatUartConfig_st;

Function Interface
Function Interface
eat_uart open
eat uart_close

eat uart set config

eat uart_get config

eat uart set baudrate
eat uart get baudrate

eat_uart write
eat_uart_read

eat uart set debug
eat_uart_set at port

eat uart set send complete event

eat uart_get send complete status

eat_uart get free space

eat modem_write

eat modem read

Example

Open and close serial port

Function

Open and close serial port

Set and acquire the parameter of serial
port

Set and acquire the transmitting baud rate

Send and receive data

Set debug port

Set Core system and AT port

Set whether enable or disable the report of
sending data completely

Acquire the status of sending data
completely

Acquire the remaining space size for send
buffer

Send date to MODEM or receive data
from MODEM

// open serial port
eat uart open(EAT UART 1);

// close serial port
eat uvart close (EAT UART 1);

Set the parameter for serial port

EatUartConfig_st uart config;

uart_config.baud = 115200;

vart config.dataBits = EAT UART DATA BITS 8;
vart config.parity = EAT UART PARITY NONE;
uart_config.stopBits = EAT UART _STOP_BITS 1;

SIMB00 Series Embedded AT Application Note_V1.02

2014-05-30

19

%g
?;Ooooo
ekt

Smart Machine Smart Decision

eat uvart set config(EAT UART 1, &uart config);

Acquire the parameter for serial port

EatUartConfig_st uart config;

eat uvart get config(EAT UART 1, &uart config);

Set the baud rate

eat uvart set baudrate (EAT UART 1, EAT UART BAUD 115200);

Acquire the baud rate

EatUartBaudrate baudrate;

baudrate = eat_uart get baudrate (EAT UART 1);

Send and receive data

ul6 len;
u8 rx_buf[EAT UART RX BUF LEN MAX];

//receive data
len = eat_uvart read(EAT UART 1, rx_buf, EAT UART RX BUF LEN MAX);
if(len != 0)
{
// send data
eat_uart write(EAT UART 1, rx buf, len);

Set function port

eat uart set at port(EAT UART 1);
eat uart set debug(EAT UART 2);

Set whether enable the report of sending data completely

//Enable the report of sending data completely
eat uart set send complete event (EAT UART 1, EAT TRUE);

//Disable the report of sending data completely
eat uart set send complete event (EAT UART 1, EAT FALSE);

Acquire the status of sending data completely

eat_bool status;
status = eat_uart_get send complete status (EAT _UART 1);

SIMB00 Series Embedded AT Application Note_V1.02 20
2014-05-30

S
aCom

Acompany

Smart Machine Smart Decision

Acquire the remaining space size of sending buffer

unsigned short size;
size = eat_uart_get free space (EAT UART 1);

Data transmitting between EAT and MODEM

ul6 len;
u8 rx_buf[5120];

//Receive data

len = eat modem read (EAT UART 1, rx_buf, 5120);
//Send ata

eat_ modem_ write (EAT UART 1, rx_buf, len);

7.4 Serial Port Data Flow

Flow Chart of Serial Port data and message in EAT Application

EAT_EVENT UART_READY WR

EAT_EVENT_UART_READY_RD EAT_EVENT_UART_SEND COMPLETE
EAT Task
eat uart read eat uart write
Rx ring buffer Tx ring buffer
2KB 2KB MSG
\ K «Data>
UART Driver

Flow Chart of Serial Port Data and Message between EAT and Modem

SIMB00 Series Embedded AT Application Note_V1.02 21
2014-05-30

W Smart Machine Smart Decision
EAT_EVENT _MDM_READY_RD EAT_EVENT_MDM_READY_WR
EAT Task
eat modem_read eat modem_write
Rx ring buffer B
S5KB ﬁ
>
> <
o
=. 2
< Tx ring buffer 8
@
S5KB h
7.5 Note

1) Once APP receives the message from EAT EVENT MDM READY RD or
EAT EVENT UART READY RD, it would read the data from RX buffer with
eat modem read or eat uart read interface. If there has data unread in buffer, then

READY_RD message will not report when receiving new data.

\S]
~

The following functions should be used after eat uart open and before eat uart clode :
® cat uart set config

eat uart get config

eat uart set baudrate

eat uart get baudrate

eat uart_write

eat uart read

eat uart set send complete event

eat uart get send complete status

eat uart get free space

3) Following functions should be used in initialization phase (in the member function
func_extl of struct EatEntry st)

® cat uart set debug

® cat uvart set at port

® cat uart set debug config

4) APl eat vart set at port is not available before firmware version 1116B02VO1.

SIMB00 Series Embedded AT Application Note_V1.02 22
2014-05-30

Qz

o3

Com : fai

prer vty Smart Machine Smart Decision

EAT API eat_get version() or eat get buildno() could get FW version, also could use

AT command to read as following.

at+cgmr
Revision:1116B02SIM840W64 WINBOND EMBEDDEDAT
OK

at+csub

+CSUB: V01

OK

SIMB00 Series Embedded AT Application Note_V1.02 23
2014-05-30

&a::
90
S0
Com

Acompany

Smart Machine Smart Decision

8 Flash Allocation

8.1 Function Description
There have interfaces for flash writing, erasing and app upgrade.

8.2 Function Interface and Example
Function Interface

eat_flash erase Erase FLASH block

eat flash write Write data to FLASH
eat_update_app Upgrade app

eat_get app base addr Get app base address

eat get app space Get the space size of app

eat get flash block size Get the size of FLASH block

8.3 Space allocation

FLASH allocation of standard EAT version is shown in the following table. The address
configuration may be different based on customer’s requirement.

The base address and space size of app can be acquired by interfaces eat_get app_ base addr() and
eat _get app space() .

Following tables show different flash allocation based on different modules.

SIM800W 64 M Versions:

Modem 08000000 083FFFFF 4M (0x400000)
APP 08400000 0867FFFF 2.5M (0x280000)
FS 08680000 087BFFFF 1.25M (0x140000)
RAM F0220000 FO3FFFFF 1.875M (0x1E0000)

SIM800V 128 M Version

Modem 08000000 084FFFFF SM (0x500000)
APP 08500000 086FFFFF 2M (0x200000)

FS 08700000 08EEFFFF 7.9M (0x7F0000)
RAM F0220000 FO3FFFFF 1.875M (0x1E0000)
SIM800 Series Embedded AT Application Note_V1.02 24

2014-05-30

Acompany

Smart Machine Smart Decision

SIMB800H Version

Modem 10000000 101FFFFF 2M (0x200000)
APP 10200000 1037FFFF 1.5M (0x180000)
FS 10380000 103FDFFF 504K (0x7E000)
RAM F0380000 FO3FFFFF 512K (0x80000)

SIM800 32M Version

Modem 10000000 101FFFFF 2M (0x200000)
APP 10200000 1037FFFF 1.5M (0x180000)
FS 10380000 103FDFFF 504K (0x7E000)
RAM F0380000 FO3FFFFF 512K (0x80000)

SIM800 64M Version

Modem 10000000 103FFFFF 4M (0x200000)
APP 10400000 1067FFFF 2.5M (0x280000)
FS 10682000 107C1FFF 1.25M (0x140000)
RAM F0600000 FO77FFFF 1.5M (0x180000)

APP: customer’s app code and ROM space

FS : File system space includes system parameter , calibration parameter , etc. File system space
supplied to customer is also contained in this space. The system occupies 200K space, so size of
space customer can use is equal to file system size minus 200K.

Note: Customer has different requirements for different platform, so the address configuration
of Flash and RAM space size may also be different. Please refer to the released version.

8.4 APP upgrade

App could be updated during module in working status.

There has a flag for app upgrade status. Only after app upgraded completely finished, this flag will
be clear. Supposed the process was interrupted in middle, after next reboot, app upgrade process
will continue from beginning. So, this protection will make module recovery from abnormal

status.

In the end of process, module will reboot app, and pass parameter to app _main.

SIM800 Series Embedded AT Application Note_V1.02 25
2014-05-30

[I
900
90
900
&Com

Acompany

Smart Machine Smart Decision

app upgrade flow is as following:

u32 APP DATA RUN BASE; //running address of app
u32 APP DATA STORAGE BASE; //storage address of
app updating code

const unsigned char app_new_data[] = {
#include app_new
};//data of updating code

void update app_test start ()

//Acquire address

APP_DATA RUN _ BASE = eat_get_app_base_addr(); // acquire app address

app_space_value = eat_get_app_space(); //acquire app space size

APP_DATA STORAGE BASE = APP_DATA RUN BASE + (app_space value>>1);
// save the address of app updating file

// erase the flash space area of updating storage address

eat flash erase(APP_DATA STORAGE BASE,update app data len);

// download the updating program into flash space area , the starting address is
APP_DATA STORAGE BASE

eat_flash write(APP_DATA STORAGE BASE, app new_data, app_datalen);

// update

eat_update app((void*)(APP_DATA RUN _ BASE),
(void*)(APP_DATA STORAGE BASE), app datalen, EAT PIN NUM, EAT PIN NUM,
EAT FALSE);

}

The updating process after calling eat_update_app is as following:

1) Write the related parameters into the APP update flag area ;

2) Reboot module, check the value of APP update flag, move the updating program in the
address of APP DATA STORAGE BASE to the app running address
APP DATA RUN BASE, and set the value of flag .

3) Reboot module again and run new app code. Module will check the parameter from
app_main(void param) and judge the result of app upgrade process, then clear the flag in APP

updata flag area.

void app_main(void *data)

{

SIMB00 Series Embedded AT Application Note_V1.02 26
2014-05-30

it Smart Machine Smart Decision

EatEvent st event;
EatEntryPara_st *para;

APP_InitRegions();//Init app RAM

para = (EatEntryPara_st*)data;

memcpy(&app_para, data, sizeof(EatEntryPara_st));
if(app_para.is_update app && app_para.update app_result)

{
//APP update succeed

eat update_app_ok(); //clear update APP flag

Customer should clear update flag by calling eat updata_app_ok() in new app_main code.
If not, module will write data in APP_DATA STORAGE BASE
APP_DATA DATA RUN BASE.

8.5 Note

D Block is the basic unit for flash operation. The address for eat flash erase(const
void*address, unsigned int size) should be in integral multiple of block. If not, EAT

to

system will handle it, and set the operating address from the starting address of the block.

If size is not in integral multiple of block, module will erase (size/block size)+1 pcs of

block. The interface to get flash block size is eat_get flash_block size.

2) if the block was written before, customer should erase first before writing again.

SIM800 Series Embedded AT Application Note_V1.02 27
2014-05-30

[I
Com
oS Teen

Acompany

Smart Machine Smart Decision

9 File System

Following are interface API functions.

Function Interface Function
eat fs Open Open or create file
eat fs Close Close the opened file
eat fs Read Read file
eat fs Write Write file
eat fs Seek Seek the file pointer
eat fs Commit Push file to disk
eat_fs GetFileSize Acquire the file size
eat fs GetFilePosition Acquire the current file’s pointer
eat_fs GetAttributes Acquire the file’s attribute
eat fs SetAttributes Configure the file’s attribute
eat fs Delete Delete file
eat_fs CreateDir Create file directory
eat fs RemoveDir Delete file directory
eat_fs Truncate Truncate file
eat fs GetDiskFreeSize Acquire the size of remained file system
space
eat fs GetFolderSize Acquire file size
9.1 Note

1) There have only four kinds of file operations which include FS READ WRITE ,
FS READ ONLY , FS CREATE and FS CREATE ALWAYS intrerfaces. It supports to
open or create maximum 24 files at the same time. The created file name need two-byte
alignment and in UCS2 code. For example, customer can’t use “C:\\file.txt” to open a file
directly but have to use L”C:\\file.txt”. The actual value is :

00000000k: 43 00 34 00 5C 00 5C 00 66 00 69 00 6C 00 65 00 ; C.i.bh.
00000010kh: ZE 00 74 00 75 00 74 [EQ TR
The example of converting char to unicode
for(i=0;i<filename_len;i++)
{
filename 1[i*2] = filename[i];
filename I[i*2+1] = 0x00;
H
2) Eat fs GetDiskFreeSize supports to acquire the remained space size of inner file system and

T-Flash. It may get corresponding error value if there is no external T-Flash .

SIMB00 Series Embedded AT Application Note_V1.02 28
2014-05-30

0. Com Smart Machine Smart Decision

3) eat fs Write has no size limitation for writing data at one time, but it would make error once
write data more than the remained space size of file system or SD card. The actual length of
data written in file system is referring to last parameter return of this interface.

4) The drive of inner file system is “C”, root directory is “C:\\”. The drive of T Flash is “D:”,
root directory is “D:\\” . if customer operate files without drive name, module will use inner
flash memory.

SIM800 Series Embedded AT Application Note_V1.02 29
2014-05-30

it Smart Machine Smart Decision

10 Peripheral Interface

10.1 Function Introduction

EAT provides some API functions to operate peripheral interfaces, like LCD, Keypad, ADC and so
on.

1) GPIO read/write control interface

2) Interrupt configuration interface

3) Analog SPI interface

4) PWM output control interface

5) ADC read interface

6) Powerkey , LED control interface

10.2 Relative Function Interface and Example

10.2.1 GPIO Read/write and control Interface

Below is the enumeration definition for SIMS80OW PIN, please refer to the the definition in
eat_periphery.h for other platform (module).

typedef enum {

EAT PIN6_ADCO = 6, /I ADC
EAT PIN8 GPIOI =8, / GPIO
EAT PIN9 12C SDA =9, // GPIO, KEY_ROW, EINT, I2C_SDA
EAT PIN10 I2C SCL=10, //GPIO,KEY COL,12C SCL
EAT PIN11 KPLED =11, // KPLED
EAT PIN16 NETLIGHT =16, //PWM
EAT PIN28 GPIO2 =28, // GPIO, EINT
EAT PIN29 KBCS5 =29, // GPIO, KEY COL, EINT
EAT PIN30 KBC4 = 30, // GPIO, KEY_COL
EAT PIN31 KBC3 =31, // GPIO, KEY_COL
EAT PIN32 KBC2 =32, // GPIO, KEY_COL
EAT PIN33 KBCI =33, // GPIO, KEY_COL
EAT PIN34 KBCO = 34, //IKEY_COL
EAT PIN35 KBRS =35, // GPIO, KEY_ROW, EINT
EAT PIN36 _KBR4 = 36, // GPIO, KEY ROW
EAT PIN37 KBR3 =37, // GPIO, KEY _ROW
EAT PIN38 KBR2 =38, // GPIO, KEY _ROW
EAT PIN39 KBRI =39, // GPIO, KEY _ROW
EAT PIN40 KBRO =40, // GPIO, KEY_ROW, SPI_LSDI
EAT PIN45 GPIO3 =45, // GPIO, EINT
SIMB00 Series Embedded AT Application Note_V1.02 30

2014-05-30

S
aCom

Acompany

EAT_PIN46_DISP_DATA = 46, // GPIO, SPI_LSDA
EAT PIN47 DISP_CLK =47, //GPIO, SPI_SCK
EAT PIN48 DISP_RST =48, //GPIO

EAT PIN49 DISP DC =49, // GPIO, KEY_ROW, SPI_LSA

EAT PIN50 DISP_CS=50, //GPIO, SPI_LSCE
EAT PIN51_VDD EXT=51, //VDD_EXT
EAT PIN52 PCM_SYNC =52, // GPIO

EAT PIN53 PCM IN=53, //GPIO

EAT PIN54 PCM CLK =54, //GPIO

EAT PIN55 PCM OUT=55, // GPIO

EAT PIN57 GPIO4 =57, // GPIO, KEY COL, EINT
EAT PIN58 RXD3 = 58, // GP1O, UART3

EAT PIN59 TXD3 =59, // GPIO, UART3

EAT PIN60 RXD = 60, // UART1

EAT PIN61 TXD =61, // UART1

EAT PIN62 DBG RXD =62, // GPIO, UART2
EAT PIN63 DBG TXD=63, // GPIO, UART2
EAT PIN65 LCD_LIGHT =65, /LCD_LIGTH
EAT PIN_NUM = 68

+ EatPinName enum;

typedef enum {
EAT PIN MODE GPIO,
EAT PIN_ MODE KEY,
EAT PIN MODE_EINT,
EAT PIN MODE UART,
EAT PIN MODE SPI,
EAT PIN MODE PWM,
EAT PIN MODE I2C,
EAT PIN MODE CLK,
EAT PIN. MODE NUM

+ EatPinMode enum;

typedef enum {
EAT GPIO LEVEL LOW,
EAT GPIO LEVEL HIGH
} EatGpioLevel enum;

typedef enum {
EAT GPIO DIR INPUT,
EAT GPIO DIR OUTPUT,
} EatGpioDir_enum;

SIMB00 Series Embedded AT Application Note_V1.02
2014-05-30

Smart Machine Smart Decision

oo
oo
oo
oo
A compar Tee

om

E; Qeooce

Smart Machine Smart Decision

Function Interface

Function Interface Function

eat _gpio_setup set PIN’s GPIO attribute

eat_gpio_write Write GPIO’s electrical level

eat gpio_read Read GPIO’s electrical level

eat_gpio_write_ext write GPIO’s electrical level (only available for

some specific pin of SIMEO0OW)

eat pin_set mode set PIN’s mode

Example

/*set PIN52 as GPIO output mode , initialized to low electrical level */
eat gpio setup(EAT PIN52 PCM_SYNC,
EAT GPIO DIR OUTPUT, EAT GPIO LEVEL LOW);

/* set PINS2 to high electrical level
eat_gpio write(EAT PIN52 PCM SYNC, EAT GPIO_LEVEL HIGH);

/*read PINS52*/
eat _gpio read (EAT PIN52 PCM_SYNC);

/* set PINS3 to high level */
eat gpio write ext(EAT PIN53 PCM_IN, EAT GPIO LEVEL HIGH);

/* set PIN40 as key value mode */
eat pin_set mode(EAT PIN40_KBRO, EAT PIN. MODE KEY);

Note:

1) eat gpio write ext interface is available in SIMS8OOW only. Compared to eat gpio_ write ,
eat_gpio write_ext has a faster speed to write . eat _gpio write_ext may take about lus
(microsecond) to write which is only half of the time eat gpio write takes.
eat_gpio_write_ext doesn’t do the fault-tolerant check and it is only effective to some
specific pins of SIM800W. The pins supported for now are as following :

EAT PIN8 GPIO1,

EAT PIN9 12C _SDA,
EAT PIN10_I2C_SCL,
EAT PIN52 PCM_SYNC,
EAT PIN53 PCM_IN,
EAT PIN54 PCM_CLK,
EAT PIN55 PCM _OUT,
EAT PIN57_GPIO4,
EAT PIN58 RXD3

EAT PIN59 TXD3,
EAT PIN62 DBG RXD

SIMB00 Series Embedded AT Application Note_V1.02 32
2014-05-30

3o
so:
Com

e Smart Machine Smart Decision

EAT PIN63_DBG_TXD,
2) Customer should pay attention to some pins’ status of pull-up and pull-down in hardware

design. For example, the following 4 pins of SIM80OW series modules should be noticed

carefully, whose status may affect the start-up of module.

® PIN16, PIN34, PIN52 should not be forced to pull-up or pull-down before module start
up.

® [fPIN64 is used to detect the SIM card status (AT+CSDT=1), this pin should be pulled up
to VDD EXT by 10k~100k resistor. If PIN64 is not used to detect the SIM card
(AT+CSDT=0), this pin can be kept open. We could use AT&W to save the configuration
of AT+CSDT, then it would follow the configuration when the module start up next time.

NETLIGHT has been pulled down
inner module already

KBCO can’t be pulled down before
start up .Otherwise , Module would

NETLIGHT Low can’t start up

34 KBCO High can’t start up .
enter into USB download mode and
can’t start up
52 PCM SYNC High can’t start up pulled up inner module already
restart after start up , If GPIOS is used as SIM card
. read the SIM card detection , it should be pulled up to
64 GPIO5S High))
abnormally , fail to VDD_EXT by 10-100K resistor
register to network externally , can’t keep it open

10.2.2 Module Interrupt configuration Interface

EVENT:
EAT EVENT INT

Enumeration Definition :

typedef enum {
EAT INT _TRIGGER_HIGH_LEVEL, /* high level*/
EAT INT _TRIGGER_LOW_LEVEL, /* low level*/
EAT INT TRIGGER RISING EDGE, /* rising edge*/
EAT INT TRIGGER FALLING EDGE, /* falling edge*/
EAT_INT _TRIGGER_NUM

} EatIntTrigger enum; /* The GPIO EINT trigger mode */

Struct :
typedef struct {

SIM800 Series Embedded AT Application Note_V1.02 33
2014-05-30

[I
Com
oS Teen

Acompany

Smart Machine Smart Decision

EatPinName enum pin; /* the pin */
EatGpioLevel enum level; /* 1-high level; 0-low level*/
} EatInt_st; /* EAT EVENT INT data struct*/

Callback Function
typedef void (*eat _gpio_int callback func)(EatInt_st *interrupt);

Function Interface

Function Interface Function
eat_int_setup set interrupt
eat int setup ext set interrupt, there is a parameter that wether or not

auto set the trigger polarity

eat int set trigger set the trigger mode of interrupt

Example:

/* define the interrupt callback function */
void int_test_handler func (Eatlnt st *interrupt)

{

//do something
H
/* set interrupt */
eat_int_setup(EAT PIN45 GPIO3, EAT INT TRIGGER LOW _ LEVEL,
100, int_test handler func);
/* if the interrupt callback function is not defined (NULL) */
//Get INT EVENT
eat_get event(&event);
if EAT EVENT INT == event.event)
{

//do something

}

/* reconfigure the trigger condition of interrupt */
eat_int set trigger(EAT PIN45 GPIO3, EAT INT TRIGGER RISING EDGE);

Note:

1) The unit of parameter debounce ms in eat_int_setup is 10ms. For example, it means 100ms if
debounce ms is equal to 10. This parameter debounce ms is only effective to level-triggered
interrupt.

2) If customer wants to invert interrupt mode after pin triggered, then customer needs to
configure the interrupt inversion in callback function.

3) The response time of edge-triggered interrupt is about 1ms. The response time of
level-triggered interrupt equals debounce ms plus 1ms, it depends on the configuration of

debounce ms.

SIMB00 Series Embedded AT Application Note_V1.02 34
2014-05-30

&3

o3

Com : fai
prer vty Smart Machine Smart Decision

4) If level-triggered interrupt mode and EVENT interrupt mode used, then customer should
check current status of pin before configuration, and configure the different status. For
example, pin’s current status is LOW_LEVEL, then trigger level should be configured to
HIGH LEVEL. Otherwise the core will get continuous interrupt report which may cause
module reboot. Or customer could try eat int setup ext interface, and configure last
parameter as opposite level.

5) When using interrupt callback mode, do not use functions which will occupy long time or

resource of system in callback function.

10.2.3 SPI Interface

Enumeration Definition
typedef enum {
EAT SPI 3WIRE, /* 3 wire SPI */
EAT SPI 4WIRE /* 4 wire SPI */
} EatSpiWire enum;

typedef enum {
EAT SPI CLK 52M =1, /* 52M clock */
EAT SPI CLK 26M =2, /*26M clock */
EAT SPI CLK 13M=4 /* 13Mclock */
} EatSpiClk_enum; /* Can turn down the freg if you need ,the scope is 1~1024 */

typedef enum {
EAT_SPI BITS, /* 8 bit */
EAT_SPI _BIT9, /* 9 bit */
EAT_SPI BIT16, /* 16 bit */
EAT_SPI BIT24, /* 24 bit */
EAT SPI BIT32 /* 32 bit */
} EatSpiBit_enum;

Function Interface:

Function Interface Funciton
eat spi_init Initialize SPI configuration
eat spi_write Write SPI
eat_spi_read Read SPI
Example:

/* initialize SPI configuration */
eat spi_init(EAT SPI CLK 13M, EAT SPI 4WIRE,
EAT SPI BITS, EAT FALSE, EAT TRUE);

/* write data or commands */

SIMB00 Series Embedded AT Application Note_V1.02 35
2014-05-30

[I
900
90
900
aCom

Acompany

Smart Machine Smart Decision

static void lcd_write_cmd(unsigned char cmd)
{

eat_spi_write(&cmd, 1, EAT TRUE);
}
static void lcd_write data(unsigned char data)
{

eat_spi_write(&data, 1, EAT FALSE);
}

/* read data of len bytes */

static void lcd_read data(unsigned char *data, unsigned char len)

{

eat_spi_read(data,len);

Note:

If SPI operation is not controlled by external DISP_CS signal, customer should control this in app

code, enable_cs should be false in eat_spi_init.

10.2.4 PWM Output Control Interface

Function Interface

Function Interface Function

eat_ pwm_start Output PWM

eat pwm_stop Stop output PWM
Example :

/* output PWM */
eat pwm_start(200,50);

/* stop output PWM */
eat pwm_stop();

Note:
1) Output cycle : 0 (all low) — 100 (all high)

10.2.5 ADC Interface

EVENT:
EAT EVENT ADC

Struct :
typedef struct {

SIMB00 Series Embedded AT Application Note_V1.02
2014-05-30

36

@CW‘ Smart Machine Smart Decision

EatPinName_enum pin; /* the pin */
unsigned int v; /* ADC value,unit is mv*/
} EatAdc_st;

Callback Function:

typedef void (*eat_adc_callback func)(EatAdc st *adc);
Function Interface:

eat_adc_get Read ADC

Example:

/* define interrupt callback function */
void adc_test handler func (EatAdc st * adc)

{

//do something
}
/* read ADC */

eat_adc_get(EAT PIN6_ADCO, 3000, adc_test handler func);
/* if the interrupt callback function is not defined(NULLL) */
//Get INT EVENT
eat_get event(&event);
if(EAT_ EVENT ADC == event.event)
{

//do something

Note:

Only this pin EAT _PIN6_ADCO is available to read ADC for SIM800W , the external voltage
range is 0-2.8V .

For the ADC PIN definition of other platform , please refer to the macro definition in
eat_periphery.h of the corresponding platform .

10.2.6 PowerKey, LED Control Interface

Function Interface

eat_lcd light sw LCD backlight control interface
eat kpled sw Keypad backlight control interface
eat_poweroff key sw PoweKey control interface . If we don’t enable

this function , powering off the module by key
is disable as default .

Example :
SIM800 Series Embedded AT Application Note_V1.02 37
2014-05-30

[I
900
90
900
aCom

Acompany

Smart Machine Smart Decision

/* light up LCD backlight */
eat lcd light sw(EAT TRUE);// there is one more parameter for SIM800OH and SIM800 which is
used to set the current magnitude */

/* light up keypad backlight */
eat kpled sw (EAT TRUE);

/* enable powering off the module by long-pressing PowerKey */
eat_poweroff key sw(EAT TRUE);

Note :

1) System can’t enter sleep mode if LCD backlight or keypad backlight is on .

2) one second for long-pressing PowerKey would power off the module if
eat_poweroff key sw(EAT TRUE).
The module can’t be powered off if USB connected or pressing PowerKey all the time, it
would restart after 30 seconds.

10.2.7 KEYPAD
The message of keypad is forwarded by EAT EVENT KEY.

EVENT:
EAT EVENT KEY

Key Value Enumeration Definition:
typedef enum {
EAT KEY_CORO,
EAT KEY CORI,
EAT KEY COR2,
EAT KEY COR3,
EAT KEY COR4,
EAT KEY CORS,
EAT KEY CIRO,
EAT KEY CIRI,
EAT KEY CIR2,
EAT KEY CIR3,
EAT KEY CIR4,
EAT KEY CIRS,
EAT KEY_C2RO,
EAT KEY C2RI,
EAT KEY C2R2,
EAT KEY C2R3,
EAT KEY C2R4,
EAT KEY C2RS,
EAT KEY_ C3RO,

SIMB00 Series Embedded AT Application Note_V1.02 38
2014-05-30

it Smart Machine Smart Decision

EAT KEY C3RI1,
EAT KEY C3R2,
EAT KEY C3R3,
EAT KEY C3R4,
EAT KEY C3RS,
EAT KEY_C4RO0,
EAT KEY C4RI1,
EAT KEY _C4R2,
EAT KEY C4R3,
EAT KEY C4R4,
EAT KEY_C4RS5,
EAT KEY_C5RO0,
EAT KEY C5RI1,
EAT KEY _C5R2,
EAT KEY C5R3,
EAT KEY C5R4,
EAT KEY _C5RS,
EAT KEY POWER,
EAT KEY NUM
} EatKey enum;

/* EAT KEY configuration structure. */
typedef struct {

EatKey enum key value; /* key value */

eat_bool is_pressed; /* 1-key press down; 0-key release up */
} EatKey st;

Example:

void app_main(void *data)

{
EatEvent st event;
eat get event(&event);
switch(event.event)

{

case EAT EVENT KEY:

eat_trace("Get key value:%d pressed:%d", event.data.key.key value, event.data.key.
is_pressed);

break;

SIM800 Series Embedded AT Application Note_V1.02 39
2014-05-30

[I
900
90
900
aCom

Smart Machine Smart Decision

11 Audio

11.1 Function Introduction

It provides interfaces to play or stop tone (keypad tone, dial tone, busy tone, etc) and audio data
flow (in format of MIDI and WAV).

11.2 Function Interface and Example
Function Interface:

Function Interface Function

eat_audio play tone id play tone

eat audio_stop tone id stop play tone

eat audio play data play audio data flow in MIDI or WAV format

eat_audio_stop data stop play audio data flow

eat audio_set custom_tone generate customized tone

Struct :
typedef struct {

unsigned short freql; /* First frequency */
unsigned short freq2; /* Second frequency */
unsigned short on_duration; /* Tone on duation, in ms unit, 0 for continuous tone */
unsigned short off duration; /* Tone off duation, in ms unit, 0 for end of playing */
unsigned char next_operation; /*Index of the next tone */

} EatAudioToneData_st;

Example
eat_audio_play tone id application

eat_audio_play tone id(EAT TONE DIAL CALL GSM, EAT AUDIO PLAY INFINITE,
15, EAT_AUDIO PATH SPK1);

eat_audio_stop_id application

eat_audio_stop _tone id(EAT TONE DIAL CALL GSM);

eat_audio_play data application

const unsigned char audio_test wav_data[] = { /* ring2.wav */
0x52,0x49,0x46,0x46,0x62,0x9B,0x04,0x00,0x57,0x41,0x56,0x45,0x66,0x6D,0x74,0x20,
0x10,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x40,0x1F,0x00,0x00,0x80,0x3 E,0x00,0x00,

}

eat audio play data(audio test wav_data, sizeof(audio_test wav_data),
EAT AUDIO FORMAT WAV, EAT AUDIO PLAY_ INFINITE R 12,
SIMB00 Series Embedded AT Application Note_V1.02 40

2014-05-30

it Smart Machine Smart Decision

EAT_AUDIO_PATH_SPK2);

eat_audio_stop_data application

eat_audio_stop_data();

11.3 Note

1) The tone includes key tone and audio tone, and audio tone is prior to key tone. It would stop
key tone if play audio tone.

2) Call is prior to audio data flow, and audio data flow is prior to tone. So call would stop audio
data flow playback, audio data flow would stop tone playback, also call would stop tone
playback.

3) Tone can be played but audio data flow can’t in call process.

4) The id of eat audio play tone id() and eat audio stop tone id() should match to avoid
stopping incorrectly .

5) Make sure the audio data flow is in correct format for playback, only MIDI and WAV format
is supported for now.

6) The common tone frequency (refer to struct EatAudioToneData_st) :

---Busy Tone : EAT TONE BUSY CALL GSM: { {425, 0,500,500, O} }
---Dial Tone : EAT TONE DIAL CALL GSM, { {425, 0, O, O, O} }

SIMB00 Series Embedded AT Application Note_V1.02 41
2014-05-30

A compan

E; Qeeee

Smart Machine Smart Decision

12 Socket

12.1 Function Introduction

Platform supports SOCKET interface, customer can use it to create TCP or UDP connection

and transfer data.
12.2 Function Interface and Example

SOCKET supports 3 type interfaces, they are GPRS bear, SOCKET about, and DNS query.
The GPRS bear is basic, SOCKET and DNS is based on it.

Function Interface:

Function Interface Function

eat_gprs_bearer open Open GPRS bear

eat gprs bearer hold Hold GPRS bear

eat_gprs bearer release Release GPRS

eat soc_create Create socket

eat soc_notify register Register call back function while socket notify
eat_soc_connect Connects to the server

eat_soc_setsockopt Sets the socket options.

eat_soc_getsockopt Gets the socket options.

eat_soc_bind Bind local port

eat soc_listen makes a socket to a server socket to wait client connections
eat_soc_accept waits for the incoming connections and return a socket id of

new connection.

eat_soc_send Send the data to the destination

eat_soc_recv Receive data and return the source address

eat_soc_sendto Send the data to the destination, more use TCP connection

eat soc_recvfrom Receive data and return the source address, more use UDP
connection

eat soc_getsockaddr Get local IP address

eat_soc_close Close Socket

eat soc_gethostbyname gets the IP of the given domain name

eat soc_gethost notify register set call back function about eat soc gethostbyname

Call back function Type:
typedef void(*eat_soc notify)(s8 s,soc_event_enum event,eat_bool result, ul6 ack size);
//socket event notify

SIMB00 Series Embedded AT Application Note_V1.02 42
2014-05-30

Acompany

S
aCom

Smart Machine Smart Decision

typedef void(*eat_bear notify)(cbm_bearer state enum state,u8 ip_addr[4]);

//gprs bear state notify

typedef void(*eat_hostname notify)(u32 request _id,eat bool result,u8 ip_addr[4]);

//DNS query notify

Struct:

/* Bearer state */

typedef enum

{
CBM_DEACTIVATED =0x01, /* deactivated */
CBM_ACTIVATING =0x02, /* activating */
CBM_ACTIVATED = 0x04, /* activated */
CBM_DEACTIVATING = 0x08, /* deactivating */

CBM_CSD _AUTO DISC TIMEOUT = 0x10, /* csd auto disconnection timeout */
CBM_GPRS AUTO DISC TIMEOUT = 0x20, /* gprs auto disconnection timeout */

CBM_NWK NEG QOS _MODIFY = 0x040, /* negotiated network qos modify
notification */

CBM_WIFI STA INFO MODIFY = 0x080, /* wifi hot spot sta number is
changed */

CBM_BEARER _STATE TOTAL

} cbm_bearer state enum;

/* Socket return codes, negative values stand for errors */

typedef enum

{
SOC_SUCCESS =0, /* success */
SOC_ERROR =-1, /* error */
SOC_WOULDBLOCK =-2, /* not done yet */
SOC_LIMIT RESOURCE =-3, /* limited resource */
SOC_INVALID SOCKET =-4, /* invalid socket */
SOC_INVALID ACCOUNT =-5, /* invalid account id */
SOC_NAMETOOLONG = -0, /* address too long */
SOC_ALREADY =-7, /* operation already in progress */
SOC_OPNOTSUPP =-8, /* operation not support */
SOC_CONNABORTED =-9, /* Software caused connection abort */
SOC_INVAL =-10, /* invalid argument */
SOC _PIPE =-11, /* broken pipe */
SOC_NOTCONN =-12, /* socket is not connected */
SOC_MSGSIZE =-13, /* msgis too long */
SOC_BEARER FAIL =-14, /* bearer is broken */
SOC_CONNRESET =-15, /* TCP half-write close, i.e., FINED */
SOC _DHCP_ERROR =-16, /* DHCP error */
SOC _IP_ CHANGED =-17, /* IP has changed */
SOC_ADDRINUSE =-18, /* address already in use */

SOC_CANCEL_ACT BEARER =-19 /* cancel the activation of bearer */

SIMB00 Series Embedded AT Application Note_V1.02 43
2014-05-30

Smart Machine Smart Decision

} soc_error_enum;

/* error cause */

typedef enum

{
CBM_OK
CBM_ERROR

CBM_WOULDBLOCK
CBM_LIMIT RESOURCE

=0,
= -1, /* error */
= -2, /* would block */

= -3, /* limited resource */

/* success */

CBM _INVALID ACCT ID = -4, /* invalid account id*/

CBM_INVALID_AP_ID
CBM_INVALID SIM_ID
CBM_BEARER_FAIL
CBM_DHCP_ERROR

= -5, /* invalid application id*/
= -6, /* invalid SIM id */
= .7, /* bearer fail */

= -8, /* DHCP get IP error */

CBM_CANCEL ACT BEARER = -9, /* cancel the account query screen, such as
always ask or bearer fallback screen */

CBM_DISC_BY_CM

management */

} cbm_result_error _enum;

/* Socket Type */
typedef enum

{

SOC_SOCK_STREAM =0,
SOC_SOCK_DGRAM,

SOC_SOCK_SMS,
SOC_SOCK_RAW

} socket_type enum;

/* Socket Options */

= -10 /* bearer is deactivated by the connection

/* stream socket, TCP */

/* datagram socket, UDP */
/* SMS bearer */

/* raw socket */

typedef enum
{
SOC_OOBINLINE =0x01 << 0, /*not support yet */
SOC_LINGER =0x01 <<1, /* linger on close */
SOC_NBIO =0x01 <<2, /* Nonblocking */
SOC_ASYNC =0x01 <<3, /* Asynchronous notification */
SOC _NODELAY =0x01 << 4, /* disable Nagle algorithm or not */
SOC_KEEPALIVE =0x01 <<5, /* enable/disable the keepalive */
SOC_RCVBUF =0x01 << 6, /* setthe socket receive buffer size */
SOC_SENDBUF =0x01 <<7, /* set the socket send buffer size */
SOC _NREAD =0x01 << 8, /*no. of bytes for read, only for soc_getsockopt
*/
SOC_PKT SIZE =0x01 <<9, /* datagram max packet size */
SIMB00 Series Embedded AT Application Note_V1.02 44

2014-05-30

Smart Machine Smart Decision

SOC_SILENT LISTEN = 0x01 << 10, /* SOC_SOCK_SMS property */

SOC_QOS =0x01 << 11, /* set the socket qos */
SOC_TCP_MAXSEG =0x01 << 12, /* set the max segmemnt size */
SOC IP_TTL =0x01 << 13, /* set the IP TTL value */

SOC_LISTEN BEARER =0x01 << 14, /* enable listen bearer */
SOC _UDP_ANY_FPORT =0x01 << 15, /* enable UDP any foreign port */

SOC_WIFI NOWAKEUP = 0x01 << 16, /* send packet in power saving mode */
SOC _UDP_NEED ICMP =0x01 << 17, /* deliver NOTIFY(close) for ICMP error */
SOC _IP_HDRINCL =0x01 << 18, /* IP header included for raw sockets */
SOC_IPSEC_POLICY =0x01 << 19, /* ip security policy */

SOC TCP_ACKED DATA =0x01<<20, /* TCPIP acked data */

SOC TCP DELAYED ACK =0x01 << 21, /* TCP delayed ack */

SOC TCP _SACK =0x01 << 22, /* TCP selective ack */

SOC TCP TIME STAMP =0x01<<23, /* TCP time stamp */

SOC TCP _ACK MSEG =0x01<<24 /* TCP ACK multiple segment */

} soc_option_enum;

/* event */

typedef enum

{
SOC _READ =0x01, /* Notify for read */
SOC_WRITE =0x02, /* Notify for write */
SOC_ACCEPT =0x04, /* Notify for accept */
SOC_CONNECT = 0x08, /* Notify for connect */
SOC CLOSE =0x10, /* Notify for close */
SOC_ACKED =0x20 /* Notify for acked */

} soc_event_enum;

/* socket address structure */
typedef struct
{
socket type enum sock type; /* socket type */
s16 addr_len; /* address length */
ul6 port; /* port number */
u8 addrfMAX SOCK ADDR LEN];
/* 1P address. For keep the 4-type boundary,
* please do not declare other variables above "addr"
*/

} sockaddr_struct;

Example:

SIMB00 Series Embedded AT Application Note_V1.02 45
2014-05-30

.-
HH

eesl
Com

oS Teen

Acompany

Smart Machine Smart Decision

/*define GPRS bear call back*/
eat_bear notify bear notify cb(cbm_bearer state enum state,u8 ip_addr[4])
{
switch (state) {
case CBM_DEACTIVATED: /* GPRS deactivated */
break;
case CBM_ACTIVATED : /* GPRS activated */
//here get local IP address from parameter “ip_addr”
break;
default:
break;

/*define socket event notify call back™®/
eat _soc_notify soc_notify cb(s8 s,soc_event enum event,eat _bool result, ul6 ack size)
{
switch (event) {
case SOC_READ: /* socket received data */

break;
case SOC_WRITE: /* socket can send data */
break;
case SOC_ACCEPT: /* client accepting */
break;
case SOC_CONNECT: /* TCP connect notify */
if (result == TRUE){ /*connect success*/
}
else{ /*connect failed*/
}
break;
case SOC_CLOSE: /* socket disconect */
break;
case SOC_ACKED: /* The remote has received data*/
/I ack_size is acked data’s length
break;
default:
break;
} /¥ e end switch ----- i/
}
it
/*open GPRS bear*/

ret = eat_gprs_bearer open("CMNET",NULL,NULL,bear notify cb); //open GPRS bear

SIMB00 Series Embedded AT Application Note_V1.02 46
2014-05-30

.-
HH
-
HH
Com
eompany of S Tocn

Smart Machine Smart Decision

ret = eat_gprs_bearer_hold() ; /hold GPRS bear

//in bear_notify cb function, if (state == CBM_ACTIVATED), socket can be created to connect.
/*create SOCKET connection*/

eat _soc notify register(soc_notify cb); //register call back

socket id = eat soc_create(SOC_SOCK STREAM,0); //create TCP SOCKET

val = (SOC_READ | SOC_WRITE | SOC_CLOSE | SOC_CONNECT|SOC_ACCEPT);

ret = eat_soc_setsockopt(socket id,SOC_ASYNC,&val,sizeof(val));//set async event

val = TRUE;

ret = eat_soc_setsockopt(socket _id, SOC _NBIO, &val, sizeof(val));//set no block mode
address.sock type = SOC_SOCK_STREAM;

address.addr _len = 4;

address.port = 5107; /* TCP server port */

address.addr[0]=116; /* TCP server ip address */

address.addr[1]=247,

address.addr[2]=119;

address.addr[3]=165;

ret = eat_soc_connect(socket id,&address);//connect TCP server 116.247.119.165, port is 5107

/*Close SOCKET */
ret = eat_soc_close(socket id);

/*release GPRS*/

ret = eat_gprs_bearer_release();

12.3 Note

SOCKET just supports TCP and UDP.

Three callbacks only need to register once.

Multiple DNS queries were distinguished by setting the last parameter.

SOCKET currently supports up to six channels.

To activate GPRS bearer after “+ CGREG: 17, if GPRS was deactivated, customer will
re-do the activation action. Maximum activation time out is about 80 seconds.

® TCP maximum transmission length is 1460 bytes, UDP maximum transfer length is
1472 bytes, be careful not to send too much data..

SIM800 Series Embedded AT Application Note_V1.02 47
2014-05-30

&Co“

it Smart Machine Smart Decision

13 SMS

13.1 Function Introduction

The SMS API supports sending some messages, read, or delete operation. The required
header file is “eat_sms.h”. The example is in the “app_demo_sms.c”.

13.2 Function Interface and Example

Enumeration Definition :
typedef enum _eat_sms_storage_en_
{

EAT_SM =0, /SM

EAT ME = 1,//ME

EAT SM_P =2, //First SM

EAT ME P=3,// First ME

EAT MT =4// SM and ME
}EatSmsStorage en;//storage type

typedef enum

{
EAT SMSAL GSM7 BIT =0, //7 bit code
EAT SMSAL EIGHT BIT, // 8 bit code
EAT SMSAL_UCS2, //UCS2 code
EAT SMSAL ALPHABET UNSPECIFIED

} EatSmsalAlphabet en; // SMS content encoding

Struct :
typedef struct _eat_sms_read_cnf st
{
u8 name[EAT SMS NAME LEN+1];/Name
u8 datetime[EAT SMS DATA TIME LEN+1];//Time
u8 data[EAT SMS_DATA_LEN+1];// SMS content
u8 number[EAT SMS NUMBER_LEN+1];//phone number
u8 status;//status
ul6 len;/length
}EatSmsReadCnf st;

typedef struct eat sms new message st
{
EatSmsStorage en storage; //storage type

ul6 index;// storage index

SIMB00 Series Embedded AT Application Note_V1.02 48
2014-05-30

A compar

E; Qeeee

Smart Machine Smart Decision

}EatSmsNewMessagelnd_st;// Receive SMS structure

Callback Function:

typedef void (* Sms_Send Completed)(eat_bool result);// Send SMS callback

typedef void (* Sms_Read Completed)(EatSmsReadCnf st smsReadContent); / Read SMS callback

typedef void (* Sms_Delete Completed)(eat bool result); // Delete SMS callback

typedef void (* Sms_New Message Ind)(EatSmsNewMessagelnd st smsNewMessage); // Receive SMS callback
typedef void (* Sms_Flash Message Ind)(EatSmsReadCnf st smsFlashMessage); / Receive Flash SMS callback

typedef void(* Sms_Ready Ind)(eat bool result); // SMS callback initialization is complete

Function Interface:
Function Interface
eat get SMS sc
eat set sms_sc
eat get sms ready state
eat acsii_to_ucs2
eat acsii_to_gsm7bit
eat_send pdu_sms
eat_send text sms
eat get sms_format
eat_set sms_ format
eat set sms_cnmi
eat_set sms_storage
eat_get sms_operation_mode
eat set sms_operation mode
eat_read sms
eat_delete_sms
eat sms_decode tpdu

eat_sms_orig address data convert

Description

Get the SMS center number

Set the SMS center number

Check SMS module whether ready
Convert ASCII code to UCS2 format
Convert ASCII code to 7bit code

Send PDU mode message

Send TEXT mode message

Get SMS format

Set SMS format

Set SMS CNMI parameter

Set the SMS storage type

Get SMS operation by API or AT mode
Set SMS operation by API or AT mode
Read a message

Delete a message

Decode PDU message

Convert Original address

eat sms_register_send completed callback Send message completed to callback
eat sms_register new_message callback New message reported to callback
Report flash message to callback

Report SMS ready to callback

eat_sms_register flash message callback

eat sms_register sms_ready_callback

Example:

/* Defined callback function receives flash message */

static eat_sms_flash message cb(EatSmsReadCnf st smsFlashMessage)

{
u8 format =0;
eat _get sms_format(&format);
SIM800 Series Embedded AT Application Note_V1.02 49

2014-05-30

Smart Machine Smart Decision

eat_trace("eat_sms_flash message cb, format=%d",format);
if(1 == format)//TEXTmode

{
eat _trace("eat_sms_read cb, msg=%s",smsFlashMessage.data);
eat _trace("eat_sms_read cb, datetime=%s",smsFlashMessage.datetime);
eat trace("eat_sms_read cb, name=%s",smsFlashMessage.name);
eat trace("eat sms read cb, status=%d",smsFlashMessage.status);
eat_trace("eat_sms_read cb, len=%d",smsFlashMessage.len);
eat _trace("eat_sms_read cb, number=%s",smsFlashMessage.number);
}
else//PDU mode
{
eat _trace("eat_sms_read cb, msg=%s",smsFlashMessage.data);
eat _trace("eat_sms_read cb, len=%d",smsFlashMessage.len);
}

}

/* Defined callback function receives a message */
static eat_sms_new_message cb(EatSmsNewMessagelnd st smsNewMessage)
{
eat_trace("eat_sms_new_message cb,
storage=%d,index=%d",smsNewMessage.storage,smsNewMessage.index);
}
/* Defined callback function read a message */
static void eat_sms_read cb(EatSmsReadCnf st smsReadCnfContent)

{

u8 format =0;

eat_get sms_format(&format);

eat_trace("eat_sms_read cb, format=%d",format);

if(1 == format)//TEXTmode

{
eat _trace("eat_sms_read cb, msg=%s",smsReadCnfContent.data);
eat _trace("eat_sms_read cb, datetime=%s",smsReadCnfContent.datetime);
eat_trace("eat_sms_read cb, name=%s",smsReadCnfContent.name);
eat _trace("eat_sms_read cb, status=%d",smsReadCnfContent.status);
eat _trace("eat_sms_read cb, len=%d",smsReadCnfContent.len);
eat_trace("eat_sms_read cb, number=%s",smsReadCnfContent.number);

}

else//PDU mode

{
eat _trace("eat_sms_read cb, msg=%s",smsReadCnfContent.data);
eat_trace("eat_sms_read cb, name=%s",smsReadCnfContent.name);
eat _trace("eat_sms_read cb, status=%d",smsReadCnfContent.status);
eat _trace("eat_sms_read cb, len=%d",smsReadCnfContent.len);

SIM800 Series Embedded AT Application Note_V1.02 50

2014-05-30

Smart Machine Smart Decision

/* Defined callback function delete a message */
static void eat_sms_delete cb(eat bool result)
{
eat_trace("eat_sms_delete cb, result=%d",result);
}
/* Defined callback function send a message */
static void eat sms_send cb(eat bool result)
{
eat_trace("eat_sms_send cb, result=%d",result);
}
/* Defined callback function complete SMS module initialization */
static void eat_sms_ready cb(eat bool result)

{

eat_trace("eat_sms_ready cb, result=%d",result);

}
/*APP MAIN start, Registrate above the callback function*/

void app_main(void *data)

{
//do something
// Registrate related the callback function
eat_set sms_operation mode(EAT TRUE);// Set SMS module API mode operation
eat_sms_register new_message callback(eat sms new_message cb);
eat_sms_register flash message callback(eat sms_flash message cb);
eat_sms_register send completed callback(eat sms_send cb);
eat sms_register sms_ready callback(eat sms_ready cb);
while(EAT _TRUE)
{
//do something
}
}

/* Set SMS PDU mode */

eat _set _sms_format(0);

/* Set SMS service center number */

u8 scNumber[40] = {"+8613800210500"};
eat_set _sms_sc(scNumber);

/* Set SMS storage type */

u8 meml, mem2, mem3;

eat bool ret val = EAT FALSE;

meml = EAT ME;

SIMB00 Series Embedded AT Application Note_V1.02 51
2014-05-30

oo
oo
oo
oo
A compan Tee

om

E; [I3

Smart Machine Smart Decision

mem?2 = EAT ME;

mem3 = EAT ME;

ret val = eat set sms_storage(meml, mem2, mem3);
/*Set CNMI Parameter */

mode = 2;

mt=1;

bm = 0;

ds =0;

bfr = 0;

ret val=eat _set sms_cnmi(mode,mt,bm,ds,bfr);
/* Reads the message content */

ul6 index = 1;

ret val = eat read sms(index,eat sms read cb);
/* Send SMS content */

u8 format = 0;

eat bool ret val = EAT FALSE;

eat get sms_format(&format);
if(1 == format)

{
ret val = eat send text sms("13681673762","123456789");
}
else
{
ret val =eat send pdu sms("0011000D91683186613767F20018010400410042",19);
}
/* Deletes the message content */
ul6 index = 1;

ret val = eat delete sms(index,eat _sms_delete cb);

/* Parse the content of messages received */

u8
ptr[]="0891683108200105F0040D91683186613767F20000413012516585230631D98C56B301";
u8 len = strlen(ptr);

EatSmsalPduDecode st sms_pdu = {0};

u8 useData[320] = {0};

u8 uselLen = 0;

u8 phoneNum([43] = {0};

ret = eat sms_decode_tpdu(ptr, len, &sms_pdu);

NOTE:

More specifically, a more comprehensive example, you can reference the file “app _demo_sms.c”

SIMB00 Series Embedded AT Application Note_V1.02 52
2014-05-30

QCO

A company of SIM

Smart Machine Smart Decision

13.

1)
2)

3)

4)

3Note

When a thread is initialized, customer needs to register all callbacks SMS module. If not
registered callback function accordingly, the related function will fail.

When eat sms_register sms_ready callback registered callback function returns
EAT _TRUE, SMS initialization is complete, otherwise the API operation will be failed.
When eat set sms operation mode (eat bool mode) interface parameter settings
EAT TRUE, only use the API provided by the SMS operation. If set EAT FALSE, customer
can only use AT command operation SMS.

eat_send text sms and eat send pdu sms length based interface to send SMS messages
Encoding: 7bit code is 160; 8bit code is 140; UCS2 code 70.

When operating SMS API, it is recommended to use the interface to determine whether eat get sms ready_state

SMS module initialization finished, perform SMS operations after initialization is complete.

SIMB00 Series Embedded AT Application Note_V1.02 53

2014-

05-30

[I
900
90
900
aCom

et Smart Machine Smart Decision

Contact us:

SIMCom Wireless Solutions Co.,Ltd.

Address: Building A, SIM Technology Building, No. 633, Jinzhong Road, Shanghai,
P. R. China 200335

Tel: +86 21 3252 3300

Fax: +86 21 3252 2030

URL: www.sim.com/wm

SIMB00 Series Embedded AT Application Note_V1.02 54
2014-05-30

http://www.sim.com/wm
http://www.sim.com/wm

	Contents
	Version History
	1. Embedded AT Introduction
	1.1 Overview
	1.2 Code Style
	1.3 Sources Supplied by Embedded AT

	2 Embedded AT Basic Conception
	3 Multi Threads
	3.1 Multi Threads Function Description
	3.2 Tread Introduction
	3.3 Message
	3.3.1 Message Definition
	3.3.2 Interface Definition
	3.3.3 Note

	4 Timer Application
	4.1 Overview
	4.2 Function Interface and Example
	4.3 Tips

	5 Memory Application
	6 Sleep
	7 Serial Port interface
	7.1 Function Description
	7.2 Message
	7.3 Function Interface and Example
	7.4 Serial Port Data Flow
	7.5 Note

	8 Flash Allocation
	8.1 Function Description
	8.2 Function Interface and Example
	8.3 Space allocation
	8.4 APP upgrade
	8.5 Note

	9 File System
	9.1 Note

	10 Peripheral Interface
	10.1 Function Introduction
	10.2 Relative Function Interface and Example
	10.2.1 GPIO Read/write and control Interface
	10.2.2 Module Interrupt configuration Interface
	10.2.3 SPI Interface
	10.2.4 PWM Output Control Interface
	10.2.5 ADC Interface
	10.2.6 PowerKey , LED Control Interface
	10.2.7 KEYPAD

	11 Audio
	11.1 Function Introduction
	11.2 Function Interface and Example
	11.3 Note

	12 Socket
	12.1 Function Introduction
	12.2 Function Interface and Example
	12.3 Note

	13 SMS
	13.1 Function Introduction
	13.2 Function Interface and Example
	13.3 Note

