1.10mm Height 1206 Package
Blue Chip LED
Technical Data Sheet

Part No.: LL-S150BC-B4-1B
Features:

◇ Package in 8mm tape on 7” diameter reel.
◇ Compatible with automatic placement equipment.
◇ Compatible with infrared and vapor phase reflow solder process.
◇ Mono-color type.
◇ The product itself will remain within RoHS compliant version.

Descriptions:

◇ The S150 SMD LED is much smaller than lead frame type Components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
◇ Besides, lightweight makes them ideal for miniature applications, etc.

Applications:

◇ Automotive: Backlighting in dashboard and switch.
◇ Telecommunication: Indicator and backlighting in telephone and fax.
◇ Flat backlight for LCD, switch and symbol.
◇ General use.
Package Dimension:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Chip Material</th>
<th>Lens Color</th>
<th>Source Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-S150BC-B4-1B</td>
<td>InGaN</td>
<td>Water Clear</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Notes:
1. All dimensions are in millimeters (inches).
2. Tolerance is ± 0.10mm (.004”) unless otherwise specified.
3. Specifications are subject to change without notice.
Absolute Maximum Ratings at Ta=25°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>PD</td>
<td>95</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Forward Current</td>
<td>IFP</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>(1/10 Duty Cycle, 0.1ms Pulse Width)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Forward Current</td>
<td>IF</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>VR</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Electrostatic Discharge</td>
<td>ESD</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Topr</td>
<td>-40°C to +80°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>Tsld</td>
<td>260°C for 5 Seconds</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Optical Characteristics at Ta=25°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Intensity *</td>
<td>IV</td>
<td>25</td>
<td>45</td>
<td>---</td>
<td>mcd</td>
<td>IF=20mA (Note 1)</td>
</tr>
<tr>
<td>Viewing Angle *</td>
<td>2θ1/2</td>
<td>---</td>
<td>120</td>
<td>---</td>
<td>Deg</td>
<td>IF=20mA (Note 2)</td>
</tr>
<tr>
<td>Peak Emission Wavelength</td>
<td>λp</td>
<td>---</td>
<td>468</td>
<td>---</td>
<td>nm</td>
<td>IF=20mA</td>
</tr>
<tr>
<td>Dominant Wavelength</td>
<td>λd</td>
<td>---</td>
<td>470</td>
<td>---</td>
<td>nm</td>
<td>IF=20mA (Note 3)</td>
</tr>
<tr>
<td>Spectral Line Half-Width</td>
<td>△λ</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td>nm</td>
<td>IF=20mA</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>VF</td>
<td>2.80</td>
<td>3.40</td>
<td>3.80</td>
<td>V</td>
<td>IF=20mA</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>IR</td>
<td>---</td>
<td>---</td>
<td>10</td>
<td>µA</td>
<td>V_r=5V</td>
</tr>
</tbody>
</table>

Notes:

1. Luminous Intensity Measurement allowance is ± 10%.
2. θ1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
Typical Electrical / Optical Characteristics Curves
(25°C Ambient Temperature Unless Otherwise Noted)

- **Spectrum Distribution**
 - **Ta=25°C**
 - X-axis: Wavelength (nm)
 - Y-axis: Relative Luminous Intensity (%)

- **Forward Current & Forward Voltage**
 - **Ta=25°C**
 - X-axis: Forward Voltage (VF) (V)
 - Y-axis: Forward Current (IF) (mA)

- **Luminous Intensity & Ambient Temperature**
 - X-axis: Ambient Temperature (Ta °C)
 - Y-axis: Relative Luminous Intensity (%)

- **Forward Current Derating Curve**
 - X-axis: Ambient Temperature (Ta °C)
 - Y-axis: Forward Current (IF) (mA)

- **Luminous Intensity & Forward Current**
 - **Ta=25°C**
 - X-axis: Forward Current (IF) (mA)
 - Y-axis: Relative Luminous Intensity (%)

- **Radiation Diagram**
 - **Ta=25°C**
 - X-axis: Wavelength (nm)
 - Y-axis: Intensity
Reliability Test Items And Conditions:
The reliability of products shall be satisfied with items listed below:
Confidence level: 90%.
LTPD: 10%.

1) Test Items and Results:

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Item</th>
<th>Test Hours/Cycles</th>
<th>Test Conditions</th>
<th>Sample Size</th>
<th>Ac/Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resistance to Soldering Heat</td>
<td>6 Min</td>
<td>Tsid=260±5°C, Min. 5sec</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>2</td>
<td>Thermal Shock</td>
<td>300 Cycles</td>
<td>H: +100°C 5min ∫ 10 sec L: -10°C 5min</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>3</td>
<td>Temperature Cycle</td>
<td>300 Cycles</td>
<td>H: +100°C 15min ∫ 5min L: -40°C 15min</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>4</td>
<td>High Temperature Storage</td>
<td>1000 Hrs.</td>
<td>Temp: 100°C</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>5</td>
<td>DC Operating Life</td>
<td>1000 Hrs.</td>
<td>IF=20mA</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>6</td>
<td>Low Temperature Storage</td>
<td>1000 Hrs.</td>
<td>Temp: -40°C</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
<tr>
<td>7</td>
<td>High Temperature/High Humidity</td>
<td>1000 Hrs.</td>
<td>85°C/85%RH</td>
<td>25pcs</td>
<td>0/1</td>
</tr>
</tbody>
</table>

2) Criteria for Judging the Damage:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Criteria for Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>VF</td>
<td>IF=20mA</td>
<td>---</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>IR</td>
<td>VR=5V</td>
<td>---</td>
</tr>
<tr>
<td>Luminous Intensity</td>
<td>IV</td>
<td>IF=20mA</td>
<td>F.V.*(0.7)</td>
</tr>
</tbody>
</table>

*) F.V.: First Value.
Reel Dimensions:

![Reel Diagram]

Unit: mm
Tolerance: ±0.25mm

Carrier Tape Dimensions:

Loaded quantity 3000 PCS Per reel.

![Carrier Tape Diagram]

Unit: mm
Tolerance: ±0.10mm
Please read the following notes before using the product:

1. Over-current-proof
 Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage
 2.1 Do not open moisture proof bag before the products are ready to use.
 2.2 Before opening the package, the LEDs should be kept at 30°C or less and 90%RH or less.
 2.3 The LEDs should be used within a year.
 2.4 After opening the package, the LEDs should be kept at 30°C or less and 70%RH or less.
 2.5 The LEDs should be used within 168 hours (7 days) after opening the package.
 2.6 If the moisture adsorbent material (silica gel) has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: 60±5°C for 24 hours.

3. Soldering Condition
 3.1 Pb-free solder temperature profile.

 ![Soldering Temperature Profile](image)

 3.2 Reflow soldering should not be done more than two times.
 3.3 When soldering, do not put stress on the LEDs during heating.
 3.4 After soldering, do not warp the circuit board.

4. Soldering Iron
 Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.
5. Repairing
Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

![Diagram of double-head soldering iron]

6. Caution in ESD
Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.