ESPRESSIF SMART CONNECTIVITY PLATFORM: ESP8266
Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member Logo is a trademark of the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2013 Espressif Systems Inc. All rights reserved.
Table of Contents

1 INTRODUCTION 4
2 TECHNOLOGY OVERVIEW 5
3 FEATURES 6
4 APPLICATION DIAGRAM 7
5 ULTRA LOW POWER TECHNOLOGY 8
 5.1 HIGHEST LEVEL OF INTEGRATION 8
6 ESP8266 APPLICATIONS 9
7 SPECIFICATIONS 10
 7.1 CURRENT CONSUMPTION 10
 7.2 RF PERFORMANCE 11
8 CPU, MEMORY AND INTERFACES 12
 8.1 CPU 12
 8.2 MEMORY CONTROLLER 12
 8.3 AHB AND AHB BLOCKS 12
 8.4 INTERFACES 13
 8.4.1 Master SI / SPI Control (Optional) 13
 8.4.2 General Purpose IO 14
 8.4.3 Digital IO Pads 14
9 FIRMWARE & SOFTWARE DEVELOPMENT KIT 16
 9.1 FEATURES 16
10 POWER MANAGEMENT 18
11 CLOCK MANAGEMENT 19
 11.1 HIGH FREQUENCY CLOCK 19
 11.2 EXTERNAL REFERENCE REQUIREMENTS 20
12 RADIO 21
 12.1 CHANNEL FREQUENCIES 21
 12.2 2.4GHz RECEIVER 21
 12.3 2.4GHz TRANSMITTER 22
 12.4 CLOCK GENERATOR 22
APP. QFN32 PACKAGE DRAWING 23
1 Introduction

Espressif Systems’ Smart Connectivity Platform (ESCP) of high performance wireless SOCs, for mobile platform designers, provides unsurpassed ability to embed Wi-Fi capabilities within other systems, at the lowest cost with the greatest functionality.

Figure 1: ESP8266 Block Diagram
2 Technology Overview

ESP8266 offers a complete and self-contained Wi-Fi networking solution, allowing it to either host the application or to offload all Wi-Fi networking functions from another application processor.

When ESP8266 hosts the application, and when it is the only application processor in the device, it is able to boot up directly from an external flash. It has integrated cache to improve the performance of the system in such applications, and to minimize the memory requirements.

Alternately, serving as a Wi-Fi adapter, wireless internet access can be added to any microcontroller-based design with simple connectivity through UART interface or the CPU AHB bridge interface.

ESP8266 on-board processing and storage capabilities allow it to be integrated with the sensors and other application specific devices through its GPIOs with minimal development up-front and minimal loading during runtime. With its high degree of on-chip integration, which includes the antenna switch balun, power management converters, it requires minimal external circuitry, and the entire solution, including front-end module, is designed to occupy minimal PCB area.

Sophisticated system-level features include fast sleep/wake context switching for energy-efficient VoIP, adaptive radio biasing for low-power operation, advance signal processing, and spur cancellation and radio co-existence features for common cellular, Bluetooth, DDR, LVDS, LCD interference mitigation.
3 Features

- 802.11 b/g/n protocol
- Wi-Fi Direct (P2P), soft-AP
- Integrated TCP/IP protocol stack
- Integrated TR switch, balun, LNA, power amplifier and matching network
- Integrated PLL, regulators, and power management units
- +19.5dBm output power in 802.11b mode
- Integrated temperature sensor
- Supports antenna diversity
- Power down leakage current of < 10uA
- Integrated low power 32-bit CPU could be used as application processor
- SDIO 2.0, SPI, UART
- STBC, 1×1 MIMO, 2×1 MIMO
- A-MPDU & A-MSDU aggregation & 0.4μs guard interval
- Wake up and transmit packets in < 2ms
- Standby power consumption of < 1.0mW (DTIM3)
4 Application Diagram
5 Ultra Low Power Technology

ESP8266 has been designed for mobile, wearable electronics and Internet of Things applications with the aim of achieving the lowest power consumption with a combination of several proprietary techniques. The power saving architecture operates in 3 modes: active mode, sleep mode and deep sleep mode.

By using advance power management techniques and logic to power-down functions not required and to control switching between sleep and active modes, ESP8266 consumes less than 12uA in sleep mode and less than 1.0mW (DTIM=3) or less than 0.5mW (DTIM=10) to stay connected to the access point.

When in sleep mode, only the calibrated real-time clock and watchdog remains active. The real-time clock can be programmed to wake up the ESP8266 at any required interval.

The ESP8266 can be programmed to wake up when a specified condition is detected. This minimal wake-up time feature of the ESP8266 can be utilized by mobile device SOCs, allowing them to remain in the low-power standby mode until Wi-Fi is needed.

In order to satisfy the power demand of mobile and wearable electronics, ESP8266 can be programmed to reduce the output power of the PA to fit various application profiles, by trading off range for power consumption.

5.1 Highest Level of Integration

By integrating the costliest components such as power management unit, TR switch, RF balun, high power PA capable of delivering +25dBm (peak), ESP8266 ensures that the BOM cost is the lowest possible, and ease of integration into any system.

With ESP8266, the only external BOM are resistors, capacitors, and crystal.
6 ESP8266 Applications

- Smart power plugs
- Home automation
- Mesh network
- Industrial wireless control
- Baby monitors
- IP Cameras
- Sensor networks
- Wearable electronics
- Wi-Fi location-aware devices
- Security ID tags
- Wi-Fi position system beacons
7 Specifications

7.1 Current Consumption

The following current consumption is based on 3.3V supply, and 25°C ambient, using internal regulators. Measurements are done at antenna port without SAW filter. All the transmitter’s measurements are based on 90% duty cycle, continuous transmit mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit 802.11b, CCK 1Mbps, P_{OUT}=+19.5dBm</td>
<td>215</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Transmit 802.11b, CCK 11Mbps, P_{OUT}=+18.5dBm</td>
<td>197</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Transmit 802.11g, OFDM 54Mbps, P_{OUT}+=16dBm</td>
<td>145</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Transmit 802.11n, MCS7, P_{OUT}+=14dBm</td>
<td>135</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Receive 802.11b, packet length=1024 byte, -80dBm</td>
<td>60</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Receive 802.11g, packet length=1024 byte, -70dBm</td>
<td>60</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Receive 802.11n, packet length=1024 byte, -65dBm</td>
<td>62</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Standby</td>
<td>0.9</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Deep sleep</td>
<td>10</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Power save mode DTIM 1</td>
<td>1.2</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power save mode DTIM 3</td>
<td>0.86</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Total shutdown</td>
<td>0.5</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
</tbody>
</table>
7.2 RF Performance

The following are measured under room temperature conditions with 3.3V and 1.1V power supplies.

<table>
<thead>
<tr>
<th>Description</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input frequency</td>
<td>2412</td>
<td>2484</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>50</td>
<td></td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>Input reflection</td>
<td></td>
<td></td>
<td>-10</td>
<td>dB</td>
</tr>
<tr>
<td>Output power of PA for 72.2Mbps</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>dBm</td>
</tr>
<tr>
<td>Output power of PA for 11b mode</td>
<td>17.5</td>
<td>18.5</td>
<td>19.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCK, 1Mbps</td>
<td></td>
<td>-98</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>CCK, 11Mbps</td>
<td></td>
<td>-91</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>6Mbps (1/2 BPSK)</td>
<td></td>
<td>-93</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>54Mbps (3/4 64-QAM)</td>
<td></td>
<td>-75</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>HT20, MCS7 (65Mbps, 72.2Mbps)</td>
<td></td>
<td>-71</td>
<td></td>
<td>dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjacent Channel Rejection</th>
<th></th>
<th></th>
<th></th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFDM, 6Mbps</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFDM, 54Mbps</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT20, MCS0</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT20, MCS7</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 CPU, Memory and Interfaces

8.1 CPU

This chip embeds an ultra low power Micro 32-bit CPU, with 16-bit thumb mode. This CPU can be interfaced using:

- code RAM/ROM interface (iBus) that goes to the memory controller, that can also be used to access external flash memory,
- data RAM interface (dBus), that also goes to the memory controller
- AHB interface, for register access, and
- JTAG interface for debugging

8.2 Memory Controller

The memory controller contains ROM, and SRAM. It is accessed by the CPU using the iBus, dBus and AHB interface. Any of these interfaces can request access to the ROM or RAM modules, and the memory controller arbiters serve these 3 interfaces on a first-come-first-serve basis.

8.3 AHB and AHB Blocks

The AHB blocks performs the function of an arbiter, controls the AHB interfaces from the MAC, SDIO (host) and CPU. Depending on the address, the AHB data requests can go into one of the two slaves:

- APB block, or
- flash controller (usually for standalone applications).

Data requests to the memory controller are usually high speed requests, and requests to the APB block are usually register access.
The APB block acts as a decoder. It is meant only for access to programmable registers within ESP8266’s main blocks. Depending on the address, the APB request can go to the radio, SI/SPI, SDIO (host), GPIO, UART, real-time clock (RTC), MAC or digital baseband.

8.4 Interfaces

The ESP8266 contains several analog and digital interfaces described in the following sections.

8.4.1 Master SI / SPI Control (Optional)

The master serial interface (SI) can operate in two, three or four-wire bus configurations to control the EEPROM or other I2C/SPI devices. Multiple I2C devices with different device addresses are supported by sharing the 2-wire bus.

Multiple SPI devices are supported by sharing the clock and data signals, using separate software controlled GPIO pins as chip selects.

The SPI can be used for controlling external devices such as serial flash memories, audio CODECs, or other slave devices. It is set up as a standard master SPI device with 3 different enable pins:

- SPI_EN0,
- SPI_EN1,
- SPI_EN2.

Both SPI master and SPI slave are supported with the latter being used as a host interface.

SPI_EN0 is used as an enable signal to an external serial flash memory for downloading patch code and/or MIB-data to the baseband in an embedded application. In a host based application, patch code and MIB-data can alternatively be downloaded via the host interface. This pin is active low and should be left open if not used.

SPI_EN1 is usually used for a user application, e.g. to control an external audio codec or sensor ADC, in an embedded application. This pin is active low and should be left open if not used.
SPI_EN2 usually controls an EEPROM to store individual data, such as MIB information, MAC address, and calibration data, or for general use. This pin is active low and should be left open if not used.

![SPI timing characteristics](image)

Figure 2: SPI timing characteristics

8.4.2 General Purpose IO

There are up to 16 GPIO pins. They can be assigned to various functions by the firmware. Each GPIO can be configured with internal pull-up/down, input available for sampling by a software register, input triggering an edge or level CPU interrupt, input triggering a level wakeup interrupt, open-drain or push-pull output driver, or output source from a software register, or a sigma-delta PWM DAC.

These pins are multiplexed with other functions such as host interface, UART, SI, Bluetooth coexistence, etc.

8.4.3 Digital IO Pads

The digital IO pads are bidirectional, non-inverting and tri-state. It includes input and an output buffer with tristate control inputs. Besides this, for low power operations, the IO can also be set to hold. For instance, when we power down the chip, all output enable signals can be set to hold low.
Optional hold functionality can be built into the IO if requested. When the IO is not driven by the internal or external circuitry, the hold functionality can be used to hold the state to the last used state.

The hold functionality introduces some positive feedback into the pad. Hence, the external driver that drives the pad must be stronger than the positive feedback. The required drive strength is however small – in the range of 5uA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>V_{IL}</td>
<td>-0.3</td>
<td>0.25\times V_{IO}</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>V_{IH}</td>
<td>0.75\times V_{IO}</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>I_{IL}</td>
<td>50</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>V_{OL}</td>
<td></td>
<td>0.1\times V_{IO}</td>
<td>V</td>
</tr>
<tr>
<td>Output high voltage</td>
<td>V_{OH}</td>
<td>0.8\times V_{IO}</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input pin capacitance</td>
<td>C_{pad}</td>
<td>2</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>VDDIO</td>
<td>V_{IO}</td>
<td>1.7</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Maximum drive capability</td>
<td>I_{MAX}</td>
<td>12</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Temperature</td>
<td>T_{amb}</td>
<td>-20</td>
<td>100</td>
<td>°C</td>
</tr>
</tbody>
</table>

All digital IO pins are protected from over-voltage with a snap-back circuit connected between the pad and ground. The snap-back voltage is typically about 6V, and the holding voltage is 5.8V. This provides protection from over-voltages and ESD. The output devices are also protected from reversed voltages with diodes.
9 Firmware & Software Development Kit

The application and firmware is executed in on-chip ROM and SRAM, which loads the instructions during wake-up, through the SDIO interface, from the external flash.

The firmware implements TCP/IP, the full 802.11 b/g/n/e/i WLAN MAC protocol and Wi-Fi Direct specification. It supports not only basic service set (BSS) operations under the distributed control function (DCF) but also P2P group operation compliant with the latest Wi-Fi P2P protocol. Low level protocol functions are handled automatically by ESP8266:

- RTS/CTS,
- acknowledgement,
- fragmentation and defragmentation,
- aggregation,
- frame encapsulation (802.11h/RFC 1042),
- automatic beacon monitoring / scanning, and
- P2P Wi-Fi direct,

Passive or active scanning, as well as P2P discovery procedure is performed autonomously once initiated by the appropriate command. Power management is handled with minimum host interaction to minimize active duty period.

9.1 Features

The SDK includes the following library functions:

- 802.11 b/g/n/d/e/i/k/r support;
- Wi-Fi Direct (P2P) support:
- P2P Discovery, P2P Group Owner mode, P2P Power Management
- Infrastructure BSS Station mode / P2P mode / softAP mode support;
- Hardware accelerators for CCMP (CBC-MAC, counter mode), TKIP (MIC, RC4), WAPI (SMS4), WEP (RC4), CRC;
ESP8266 802.11bgn Smart Device

- WPA/WPA2 PSK, and WPS driver;
- Additional 802.11i security features such as pre-authentication, and TSN;
- Open Interface for various upper layer authentication schemes over EAP such as TLS, PEAP, LEAP, SIM, AKA, or customer specific;
- 802.11n support (2.4GHz / 5GHz);
- Supports MIMO 1×1 and 2×1, STBC, A-MPDU and A-MSDU aggregation and 0.4μs guard interval;
- WMM power save U-APSD;
- Multiple queue management to fully utilize traffic prioritization defined by 802.11e standard;
- UMA compliant and certified;
- 802.1h/rfc1042 frame encapsulation;
- Scattered DMA for optimal CPU off load on Zero Copy data transfer operations;
- Antenna diversity and selection (software managed hardware);
- Clock/power gating combined with 802.11-compliant power management dynamically adapted to current connection condition providing minimal power consumption;
- Adaptive rate fallback algorithm sets the optimum transmission rate and Tx power based on actual SNR and packet loss information;
- Automatic retransmission and response on MAC to avoid packet discarding on slow host environment;
- Seamless roaming support;
- Configurable packet traffic arbitration (PTA) with dedicated slave processor based design provides flexible and exact timing Bluetooth co-existence support for a wide range of Bluetooth Chip vendors;
- Dual and single antenna Bluetooth co-existence support with optional simultaneous receive (Wi-Fi/Bluetooth) capability.
10 Power Management

The chip can be put into the following states:

- **OFF**: CHIP_PD pin is low. The RTC is disabled. All registers are cleared.
- **DEEP_SLEEP**: Only RTC is powered on – the rest of the chip is powered off. Recovery memory of RTC can keep basic Wi-Fi connecting information.
- **SLEEP**: Only the RTC is operating. The crystal oscillator is disabled. Any wakeup events (MAC, host, RTC timer, external interrupts) will put the chip into the WAKEUP state.
- **WAKEUP**: In this state, the system goes from the sleep states to the PWR state. The crystal oscillator and PLLs are enabled.
- **ON state**: the high speed clock is operational and sent to each block enabled by the clock control register. Lower level clock gating is implemented at the block level, including the CPU, which can be gated off using the WAITI instruction, while the system is on.
11 Clock Management

11.1 High Frequency Clock

The high frequency clock on ESP8266 is used to drive both the Tx and Rx mixers. This clock is generated from the internal crystal oscillator and an external crystal. The crystal frequency can range from 26MHz to 52MHz.

While internal calibration of the crystal oscillator ensures that a wide range of crystals can be used, in general, the quality of the crystal is still a factor to consider to obtain reasonable phase noise. When the crystal selected is sub-optimal due to large frequency drifts or poor Q-factor, the maximum throughput and sensitivity of the Wi-Fi system is degraded. Please refer to the application notes on how the frequency offset can be measured.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>F_{XO}</td>
<td>26</td>
<td>52</td>
<td>MHz</td>
</tr>
<tr>
<td>Loading capacitance</td>
<td>C_L</td>
<td>32</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Motional capacitance</td>
<td>C_M</td>
<td>2</td>
<td>5</td>
<td>pF</td>
</tr>
<tr>
<td>Series resistance</td>
<td>R_S</td>
<td>0</td>
<td>65</td>
<td>Ω</td>
</tr>
<tr>
<td>Frequency tolerance</td>
<td>ΔF_{XO}</td>
<td>-15</td>
<td>15</td>
<td>ppm</td>
</tr>
<tr>
<td>Frequency vs temperature (25°C ~ 75°C)</td>
<td>$\Delta F_{XO,Temp}$</td>
<td>-15</td>
<td>15</td>
<td>ppm</td>
</tr>
</tbody>
</table>
11.2 External Reference Requirements

For an externally generated clock, the frequency can range from 26MHz to 52MHz can be used.

For good performance of the radio, the following characteristics are expected of the clock:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock amplitude</td>
<td>V_{XO}</td>
<td>0.2</td>
<td>1</td>
<td>Vpp</td>
</tr>
<tr>
<td>External clock accuracy</td>
<td>$\Delta F_{XO,EXT}$</td>
<td>-15</td>
<td>15</td>
<td>ppm</td>
</tr>
<tr>
<td>Phase noise @1kHz offset, 40MHz clock</td>
<td></td>
<td></td>
<td>-120</td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>Phase noise @10kHz offset, 40MHz clock</td>
<td></td>
<td></td>
<td>-130</td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>Phase noise @100kHz offset, 40MHz clock</td>
<td></td>
<td></td>
<td>-138</td>
<td>dBc/Hz</td>
</tr>
</tbody>
</table>
12 Radio

The ESP8266 radio consists of the following main blocks:

- 2.4GHz receiver
- 2.4GHz transmitter
- High speed clock generators and crystal oscillator
- Real time clock
- Bias and regulators
- Power management

12.1 Channel Frequencies

The RF transceiver supports the following channels according to the IEEE802.11bgn standards.

<table>
<thead>
<tr>
<th>Channel No</th>
<th>Frequency (MHz)</th>
<th>Channel No</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2412</td>
<td>8</td>
<td>2447</td>
</tr>
<tr>
<td>2</td>
<td>2417</td>
<td>9</td>
<td>2452</td>
</tr>
<tr>
<td>3</td>
<td>2422</td>
<td>10</td>
<td>2457</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>11</td>
<td>2462</td>
</tr>
<tr>
<td>5</td>
<td>2432</td>
<td>12</td>
<td>2467</td>
</tr>
<tr>
<td>6</td>
<td>2437</td>
<td>13</td>
<td>2472</td>
</tr>
<tr>
<td>7</td>
<td>2442</td>
<td>14</td>
<td>2484</td>
</tr>
</tbody>
</table>

12.2 2.4GHz Receiver

The 2.4GHz receiver downconverts the RF signal to quadrature baseband signals and converts them to the digital domain with 2 high resolution high speed ADCs. To adapt to varying signal channel conditions, RF filters, automatic gain control, DC offset cancelation circuits and baseband filters are integrated within the radio.
12.3 2.4GHz Transmitter

The 2.4GHz transmitter upconverts the quadrature baseband signals to 2.4GHz, and drives the antenna with a high powered CMOS power amplifier. The use of digital calibration further improves the linearity of the power amplifier, enabling a state of art performance of delivering +19dBm average power for 802.11b transmission and +16dBm for 802.11n transmission.

Additional calibrations are integrated to cancel any imperfections of the radio, such as:

- carrier leakage,
- I/Q phase matching, and
- baseband nonlinearities

This reduces the amount of time required and test equipment required for production testing.

12.4 Clock Generator

The clock generator generates quadrature 2.4GHz clock signals for the receiver and transmitter. All components of the clock generator are integrated on-chip, including:

- inductor,
- varactor, and
- loop filter.

The clock generator has built-in calibration and self test circuits. Quadrature clock phases and phase noise are optimized on-chip with patented calibration algorithms to ensure the best receiver and transmitter performance.
App. QFN32 Package Drawing

TOP VIEW

NOTE:
1) TSLP and SLP share the same expose outline but with different thickness.

<table>
<thead>
<tr>
<th></th>
<th>TSLP</th>
<th>SLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>0.800</td>
<td>0.900</td>
</tr>
<tr>
<td>NOM</td>
<td>0.750</td>
<td>0.850</td>
</tr>
<tr>
<td>MIN</td>
<td>0.700</td>
<td>0.800</td>
</tr>
</tbody>
</table>

BOTTOM VIEW

SIDE VIEW