Cylindrical Li－ion Battery Pack

Product Specification

Model: 18650 3.7v 6600mAh

Hunan Sounddon New Energy Co., Ltd
Address: No.98, Fuzhou Road, Jinhua Demonstration Area, Xiangtan City, Hunan Province, China.
http://www.soundnewenergy.com
Tel: (86) 731 - 5856 7126
Fax: (86) 731 - 5823 6346
E-mail: linda.ding@soundnewenergy.com

Prepared by: Liu Li
Checked by: Zhu Qiang
Approve by: Xiao Linping

All 10 Sheets
1.1 Li-ion Battery Pack Data Sheet

Type: Li-ion battery Pack
Model: ICR18650 3P 3.7V 6600mAh
Normal Voltage: 3.7V
Weight: 130 g (ref)
C5mAh: 6600mAh
Charge voltage: 4.20 ± 0.05V
Minimum discharge end voltage: 2.75V
Maximium charge voltage: 4.2V
Standard continuous charge current: 0.2C5mA
Maximum continuous charge current: 2200mA
Maximum continuous discharge current: 6600mA
Capacity (20] C150C, 0.2C5mA to 3.0V)
Normal capacity: 6600mAh
Minimum capacity: 6600mAh

Internal impedance (200C ± 50C AC Impedance 1 KHz): ≤ 260mfl2

Charge and discharge conditions (20°C)
Standard charge: Constant current and constant voltage (CC/CV)
Current=0.2C5mA Voltage=4.20V End Current=0.01C5mA
Fast charge: Constant current and constant voltage (CC/CV)
Current=2200mA Voltage=4.20V End Current=0.01C5mA
Standard discharge: Constant current (CC)
Current=0.2C5mA End Voltage=3.0V

Operation conditions (recommended)
Standard charge: 0-45°C
Discharge: -20°C—60°C

Storage humidity
Relative humidity: 45-75%

Temperature range for Storage (Percentage of recoverable capacity 80%)
1 month: -20+60°C
3 months: -20+45°C
1 year: -20+20°C

Standard Test Conditions (Except additional quest)
Temperature: 20°C ± 50C
Relative humidity: -65 ± 20%
1.3 Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Capacity</td>
<td>6600mAh ±5%</td>
<td>0.2C₅A discharge, 25°C</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>3.7V</td>
<td>Average Voltage at 0.2C₅A discharge</td>
</tr>
<tr>
<td>Standard Charge Current</td>
<td>0.2 C₅A</td>
<td>Working temperature: 0~40°C</td>
</tr>
<tr>
<td>Max Charge Current</td>
<td>1C₅A</td>
<td>Working temperature: 0~40°C</td>
</tr>
<tr>
<td>Charge cut-off Voltage</td>
<td>4.2V</td>
<td>CC/CV</td>
</tr>
<tr>
<td>Standard Discharge Current</td>
<td>0.5C₅A</td>
<td>Working temperature: 25°C</td>
</tr>
<tr>
<td>Discharge cut-off Voltage</td>
<td>2.75V</td>
<td></td>
</tr>
<tr>
<td>Cell Voltage</td>
<td>3.7~3.9V</td>
<td>When leave factory</td>
</tr>
<tr>
<td>Impedance</td>
<td>≤35mΩ</td>
<td>AC 1KHz after 50% charge, 25°C</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx: 130.0g</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>≤1month -10~45°C</td>
<td>Best 20 ±5°C for long-time storage</td>
</tr>
<tr>
<td></td>
<td>≤3month 0~30°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6month 20±5°C</td>
<td></td>
</tr>
<tr>
<td>Storage humidity</td>
<td>65±20% RH</td>
<td></td>
</tr>
</tbody>
</table>
1.4 General Performance

Definition of Standard charging method: At 20±5°C, charging the cell initially with constant current 0.2C5A till voltage 4.2V, then with constant voltage4.2 till current declines to 0.05C5A.

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>0.2C Capacity</td>
<td>After standard charging, laying the battery 0.5h, then discharging at 0.2C5A to voltage 2.75V, recording the discharging time.</td>
</tr>
<tr>
<td>4.2</td>
<td>1C Capacity</td>
<td>After standard charging, laying the battery 0.5h, then discharging at 1C5A to voltage 2.75V, recording the discharging time.</td>
</tr>
<tr>
<td>4.3</td>
<td>Cycle Life</td>
<td>Constant current 0.5C5A charge to 4.2V, then constant voltage charge to current declines to 0.05C5A, stay 5min, constant current 0.5C5A discharge to 2.75V, stay 5min. Repeat above steps till continuously discharging time less than 36min.</td>
</tr>
<tr>
<td>4.4</td>
<td>Capability of keeping electricity</td>
<td>20±5°C, After standard charging, laying the battery 28days, discharging at 0.2C5A to voltage2.75V, recording the discharging time.</td>
</tr>
</tbody>
</table>

1.5 Environment Performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>High temperature</td>
<td>After standard charging, laying the battery 4h at 60°C, then discharging at 0.2C5A to voltage 2.75V, recording the discharging time.</td>
</tr>
<tr>
<td>5.2</td>
<td>Low temperature</td>
<td>After standard charging, laying the battery 4h at -10°C, then discharging at 0.2C5A to voltage 2.75V, recording the discharging time.</td>
</tr>
<tr>
<td>5.3</td>
<td>Constant humidity and temperature</td>
<td>After standard charging, laying the battery 48h at 40±2°C, RH 93±2%. Recording 0.2C5A discharging time</td>
</tr>
<tr>
<td>5.4</td>
<td>Temperature shock</td>
<td>After standard charging, battery stored at -20°C for 2 hours, then stored at 50°C for 2 hours. Repeat 10 times.</td>
</tr>
</tbody>
</table>

1.6 Mechanical Performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Vibration</td>
<td>After standard charging, put battery on the vibration table. 30 min experiment from X,Y, Z axis. Scan rate: 1 oct/min; Frequency 10-30Hz, Swing 0.38mm; Frequency 30-55Hz, Swing 0.19mm.</td>
</tr>
<tr>
<td>6.2</td>
<td>Collision</td>
<td>After vibration test, batteries were laying on the vibration table about X, Y, Z axis. Max frequency acceleration: 100m/s²; collision times per minutes: 40~80; frequency keeping time 16ms; all collision times 1000±10.</td>
</tr>
<tr>
<td>6.3</td>
<td>Drop</td>
<td>Random drop the battery from 10m height onto concrete one times.</td>
</tr>
</tbody>
</table>
2. Safety Test

Test conditions: The following tests must be measured at flowing air and safety protection conditions. All batteries must standard charge and lay 24h.

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Methods</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Over charge</td>
<td>At 20 ±5°C, charging batteries with constant current 3C₅A to voltage5V, then with constant voltage5V till current decline to 0. Stop test till batteries’ temperature 10°C lower than max temperature.</td>
</tr>
<tr>
<td>7.2</td>
<td>Over discharge</td>
<td>At 20 ± 5 °C, discharge battery with 0.2C₅A continuously 12.5h.</td>
</tr>
<tr>
<td>7.3</td>
<td>Short-circuit</td>
<td>At 20 ±5°C, connect batteries’ anode and cathode by wire which impedance less than 50mΩ, keep 6h.</td>
</tr>
<tr>
<td>7.4</td>
<td>Extrusion</td>
<td>At 20 ±5°C, put the battery in two parallel steal broad, add pressure 13kN.</td>
</tr>
<tr>
<td>7.5</td>
<td>Thermal shock</td>
<td>Put the battery in the oven. The temperature of the oven is to be raised at 5 ±1°C per minute to a temperature of 130 ±2°C and remains 60 minutes.</td>
</tr>
</tbody>
</table>

3. Cautions

3.1 Cautions of batteries' operation

The batteries must be careful of proceed the operation for it’s soft package.

To assure product safety, describe the following precautions in the instruction manual of the equipment.

!Danger

- Do not heat or throw battery into a fire.
- Do not use, leave battery close to fire or inside of a car where temperature may be above 60°C. Also do not charge/discharge in such conditions.
- Hairpins, coins, or screws. Do not store batteries with such objects.
- Do not short circuit the(+)and(−)terminals with other metals.
- Do not place battery in a device with the(+)and(−)in the wrong way around.
- Do not hit with a hammer, step on or throw or drop to cause strong shock.
- Do not disassemble or modify the battery.
- Do not solder a battery directly.
- Do not use a battery with serious scar or deformation.

!Warning

- Do not use battery with dry cells and other primary batteries, or batteries of a different package, type, or brand.
- Stop charging the battery if charging is not completed within the specified time.
- During use, charge, or storage.
- Keep away from fire immediately when leakage or foul odor is detected.
- If liquid leaks onto your skin or clothes, wash well with fresh water immediately.
- If liquid leaking from the battery gets into your eyes, do not rub your eyes. Wash them well with clean water and go to see a doctor immediately.

!Caution

- Store batteries out of reach of children so that they are not accidentally swallowed.
- Batteries have life cycles. If the time that the battery powers equipment becomes much shorter than usual, the battery life is at an end. Replace the battery with a new same one.
Remove a battery whose life cycle has expired from equipment immediately. When the battery is thrown away, be sure it is non-conducting by applying vinyl tape to the (+) terminal. When not using battery for an extended period, remove it from the equipment and store in a place with low humidity and low temperature. While the battery pack is charged, used and stored, keep it away from objects or materials with static electric charges. The battery can be used within the following temperature ranges. Do not exceed these ranges.

3.2 Standard Test Environment for polymer lithium-ion batteries
Environment temperature: 20 ± 5°C Humidity: 45-85%

3.3 Cautions of charge & discharge
3.4 Charge
Charging current should be lower than values that recommend below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.

(1) Batteries charger should charging with constant current and constant voltage mode;
(2) Charging current should be lower than (or equal to) 1C
(3) Temperature 0 ~ 40°C is preferred when charging;
(4) Charging voltage must be lower than 4.25V.

3.5. Discharge
(1) Discharging current must be lower than (or equal to) 2C
(2) Temperature 0 ~ 60°C is preferred when discharging;
(3) Discharging voltage must not be lower than 2.75V.

3.6. Over-discharge
It should be noted that the cell would be at an over-discharge state by its self-discharge. In order to prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.7-3.9V. Over-discharge may cause loss of cell performance. It should be noted that the cell would not discharge till voltage lower than 2.75V.

4 Storage of polymer lithium-ion batteries
The environment of long-time storage:
Temperature: 20 ± 5°C;
Humidity: 45-85%;
Batteries were 40 ~ 60% charged.
In case of over-discharge, batteries should be charged for one time every 3 months while storing. Batteries should be discharged and charged after being stored more than a year in order to activate it and restore energy. Please charge the battery with constant current 0.5C for 1 hour so that it has some storage of charge for properly using.
Charge and discharge afresh to active and renew battery energy after storage above 1 year.

5. Transportation of polymer lithium-ion batteries
The batteries should transportation with 10 ~ 50% charged states.

6. Others
Please note cautions below to prevent cells’ leakage, heat generation and explosion.
Prohibition of disassembly cells;
Prohibition of cells immersion into liquid such as water or seawater;
Prohibition of dumping cells into fire;
Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away from fire to avoid firing.
7. Single cells specifications

<table>
<thead>
<tr>
<th>Type description</th>
<th>APL-18650 -2200mAh</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Li-ion</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>3.7v(average)</td>
</tr>
<tr>
<td>Typical Capacity (mAh)</td>
<td>2200(at c/5 from 4.2v to 2.75v at 20℃)</td>
</tr>
<tr>
<td>Nominal Capacity (mAh)</td>
<td>2200(at c/5 from 4.2v to 2.75v at 20℃)</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td></td>
</tr>
<tr>
<td>Diameter (d)</td>
<td>18.40 Max.</td>
</tr>
<tr>
<td>Height (h)</td>
<td>65.0</td>
</tr>
<tr>
<td>Weight, approx. (g)</td>
<td>46.0</td>
</tr>
<tr>
<td>Charging Method</td>
<td>Constant Current + Constant Voltage</td>
</tr>
<tr>
<td>Charge Voltage (V)</td>
<td>4.20(+/-50mv)</td>
</tr>
<tr>
<td>Initial Charge Current (mA)</td>
<td>standard Charge:1200</td>
</tr>
<tr>
<td>Charging Cut-off (a)or(b)</td>
<td>Stand Charge:3</td>
</tr>
<tr>
<td>a)by time(h)</td>
<td>Rapid Charge: 2.5</td>
</tr>
<tr>
<td>b)by min.current (mA)</td>
<td>C/50</td>
</tr>
<tr>
<td>Discharge Cut-off Voltage (v)</td>
<td>2.75</td>
</tr>
<tr>
<td>Max.continuous discharge current (mA)</td>
<td>2200</td>
</tr>
<tr>
<td>Operating Temperature (℃)</td>
<td>Charge 0-45℃</td>
</tr>
<tr>
<td></td>
<td>Discharge -20-60℃</td>
</tr>
<tr>
<td>Storage Temperature(℃)</td>
<td>1 Year at -20 to 20℃ >80</td>
</tr>
<tr>
<td></td>
<td>3 Months at -20 to 45℃ >80</td>
</tr>
<tr>
<td>Capacity Recovery Rate(%)</td>
<td></td>
</tr>
</tbody>
</table>
Cylindrical Lithium-ion battery
Product Specification

1 Months at -20 to 60°C >80

Impedance Initial(mΩ) <100@1kHz
Life Expectancy C/2,20°C(cycles) >380

After storage at initial cell voltage of 3.7 to 3.9v/cell, capacity C/5 measured at 20°C

8. PCM

ELECTRIC CHARACTERISTICS(at 25°C)

1) Overcharge Detection Voltage 4.2V±150 mV
2) Overcharge Release Voltage: 4.05V±100mV
3) Overdischarge Detection Voltage 4.8V±160mV
4) Overdischarge Release Voltage: 3V±1200mV
5) Overcurrent Detection Voltage: 0.15V±120mV
6) Overcurrent Detection: 4.00A--7.00A
7) Overcharge Detection Delay Time: 0.55S--2.06S
8) Overdischarge Detection Delay time: 67--141ms
9) OverCurrent Detection Delay Time: 6.3--14.7ms
10) Consumption Current
 --Operating mode: Max 14.2 u A
 --Power saving mode: Max 0.2 u A

11) Maximum Operating Temperature: -40°C--+85°C
12) Maximum Storage Temperature: -55°C--+125°C
13) Maximum Input Voltage: 4.2VDC
14) Maximum Charge Current: 3A
9. Notice of Designing Battery Pack

9.1 Pack design
Battery pack should have sufficient strength and battery should be protected from mechanical shock. No sharp edge components should be inside the pack contains the battery.

9.2 PCM design
The overcharge threshold voltage should not be exceeding 4.25V.
The over-discharge threshold voltage should not be lower than 2.3V.
The PCM should have short protection function built inside.

9.3 Tab connection
Ultrasonic welding or spot welding is recommended to connect battery with PCM or other parts.
If apply manual solder method to connect tab with PCM, the notice below is very important to ensure battery performance.
 ⑴ The electric iron should be temperature controlled and ESD safe;
 ⑵ Soldering temperature should not exceed 350℃;
 ⑶ Soldering time should not be longer than 3s, keep battery tab cold down before next soldering;
 ⑷ Soldering times should not exceed 5 times;
 ⑸ Directly heat cell body is strictly prohibited, battery may be damaged by heat above approx. 100℃.

9.4 Cell fixing
The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery pack should be allowed.

9.5 Cells replacement
The cell replacement should be done by professional people.
Prohibit short-circuit between cells’ Al package and exterior component.